Skip to main content
Log in

Design and optimization of 26.3% efficient perovskite/FeSi2 monolithic tandem solar cell

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A multijunction or tandem technique comprising a wide bandgap top cell and a narrow bandgap bottom cell may be a major stepping stone in an attempt to obtain high-efficiency solar cells. However, easier said than done, it takes a lot to correctly optimize the structure of all the involved layers so as to possibly obtain the desired results. In this paper, a perovskite (CH3NH3PbI3)/FeSi2 (p-i-n structure) 2-terminal (2-T) monolithic tandem solar cell is proposed and investigated using AFORS-HET v2.5 1D simulator. A hydrogenated amorphous silicon (a-Si:H)/hydrogenated microcrystalline silicon oxide (µc-Si1−xOx:H) tunnel recombination junction is employed to interconnect both perovskite and FeSi2 solar cell for current matching. The influence of both top and bottom absorber layer thickness is analyzed to optimize the device performance. The study reveals an optimized 26.3% efficient perovskite/FeSi2 monolithic tandem solar cell with JSC (21.4 mA cm−2), VOC (1.63 V), and FF (74.86%). The results in this paper suggest FeSi2 material with 0.87 eV bandgap as an alternative for narrow bandgap bottom cell for the perovskite-based tandem solar cells so as to obtain much higher efficiencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. P. Löper, B. Niesen, S.-J. Moon, S.M. De Nicolas, J. Holovsky, Z. Remes et al., Organic–inorganic halide perovskites: perspectives for silicon-based tandem solar cells. IEEE J. Photovolt. 4, 1545–1551 (2014)

    Article  Google Scholar 

  2. L.C. Andreani, A. Bozzola, P. Kowalczewski, M. Liscidini, L. Redorici, Silicon solar cells: toward the efficiency limits. Adv. Phys. 4, 1548305 (2019)

    CAS  Google Scholar 

  3. R. Pandey, R. Chaujar, Numerical simulation of rear contact silicon solar cell with a novel front surface design for the suppression of interface recombination and improved absorption. Curr. Appl. Phys. 16, 1581–1587 (2016)

    Article  Google Scholar 

  4. T.D. Lee, A.U. Ebong, A review of thin film solar cell technologies and challenges. Renew. Sustain. Energy Rev. 70, 1286–1297 (2017)

    Article  CAS  Google Scholar 

  5. M.K. Assadi, S. Bakhoda, R. Saidur, H. Hanaei, Recent progress in perovskite solar cells. Renew. Sustain. Energy Rev. 81, 2812–2822 (2018)

    Article  CAS  Google Scholar 

  6. W. Shockley, H.J. Queisser, Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32, 510–519 (1961)

    Article  CAS  Google Scholar 

  7. R. Pandey, A. Singla, J. Madan, R. Sharma, R. Chaujar, Toward the design of monolithic 23.1% efficient hysteresis and moisture free perovskite/c-Si HJ tandem solar cell: a numerical simulation study. J. Micromech. Microeng. 29, 064001 (2019)

    Article  CAS  Google Scholar 

  8. J. Madan, Shivani, R. Pandey, R. Sharma, Device simulation of 17.3% efficient lead-free all-perovskite tandem solar cell. Sol. Energy 197, 212–221 (2020)

    Article  CAS  Google Scholar 

  9. R. Pandey, R. Chaujar, Numerical simulations of novel SiGe-based IBC-HJ solar cell for standalone and mechanically stacked tandem applications. Mater. Res. Bull. 93, 282–289 (2017)

    Article  CAS  Google Scholar 

  10. A. De Vos, Detailed balance limit of the efficiency of tandem solar cells. J. Phys. D 13, 839 (1980)

    Article  Google Scholar 

  11. S.P. Bremner, M.Y. Levy, C.B. Honsberg, Analysis of tandem solar cell efficiencies under AM1.5G spectrum using a rapid flux calculation method. Prog. Photovolt. Res. Appl. 16, 225–233 (2008)

    Article  Google Scholar 

  12. C.B. Honsberg, S. G. Bowden, Photovoltaics education website (2020). https://www.pveducation.org/pvcdrom/tandem-cells

  13. M.A. Green, E.D. Dunlop, J. Hohl-Ebinger, M. Yoshita, N. Kopidakis, A.W.Y. Ho-Baillie, Solar cell efficiency tables (Version 55). Prog. Photovolt. Res. Appl. 28, 3–15 (2020)

    Article  Google Scholar 

  14. Z. Wang, Z. Song, Y. Yan, S. Liu, D. Yang, Perovskite—a perfect top cell for tandem devices to break the S-Q limit. Adv. Sci. 6, 1801704 (2019)

    Article  Google Scholar 

  15. K.A. Bush, A.F. Palmstrom, J.Y. Zhengshan, M. Boccard, R. Cheacharoen, J.P. Mailoa et al., 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nat. Energy 2, 1–7 (2017)

    Article  Google Scholar 

  16. T. Todorov, T. Gershon, O. Gunawan, Y.S. Lee, C. Sturdevant, L.Y. Chang et al., Monolithic perovskite-CIGS tandem solar cells via in situ band gap engineering. Adv. Energy Mater. 5, 1500799 (2015)

    Article  Google Scholar 

  17. Y. Liu, L.A. Renna, M. Bag, Z.A. Page, P. Kim, J. Choi et al., High efficiency tandem thin-perovskite/polymer solar cells with a graded recombination layer. ACS Appl. Mater. Interfaces. 8, 7070–7076 (2016)

    Article  CAS  Google Scholar 

  18. G.E. Eperon, T. Leijtens, K.A. Bush, R. Prasanna, T. Green, J.T.-W. Wang et al., Perovskite-perovskite tandem photovoltaics with optimized band gaps. Science 354, 861–865 (2016)

    Article  CAS  Google Scholar 

  19. Y. Gao, H. Liu, Y. Lin, G. Shao, Computational design of high efficiency FeSi2 thin-film solar cells. Thin Solid Films 519, 8490–8495 (2011)

    Article  CAS  Google Scholar 

  20. M.M.A. Moon, M.H. Ali, M.F. Rahman, J. Hossain, A.B.M. Ismail, Design and simulation of FeSi2 based novel heterojunction solar cells for harnessing visible and near-infrared light. Phys. Status Solidi (A) 217(6), 1900921 (2020)

    Article  CAS  Google Scholar 

  21. Z. Liu, S. Wang, N. Otogawa, Y. Suzuki, M. Osamura, Y. Fukuzawa et al., A thin-film solar cell of high-quality β-FeSi2/Si heterojunction prepared by sputtering. Sol. Energy Mater. Sol. Cells 90, 276–282 (2006)

    Article  CAS  Google Scholar 

  22. M. Shaban, A.M. Bayoumi, D. Farouk, M.B. Saleh, T. Yoshitake, Evaluation of photovoltaic properties of nanocrystalline-FeSi2/Si heterojunctions. Solid-State Electronics 123, 111–118 (2016)

    Article  CAS  Google Scholar 

  23. G.K. Dalapati, S.L. Liew, A.S.W. Wong, Y. Chai, S.Y. Chiam, D.Z. Chi, Photovoltaic characteristics of p-β-FeSi2(Al)/n-Si(100) heterojunction solar cells and the effects of interfacial engineering. Appl. Phys. Lett. 98, 013507 (2011)

    Article  Google Scholar 

  24. S. Wang, N. Otogawa, Y. Fukuzawa, H. Shen, H. Tanoue, T. Kojima et al., Prototype infrared optical sensor and solar cell made of B-FeSi2 thin film. SPIE 5065, 188–195 (2003)

    CAS  Google Scholar 

  25. Q. Wan, T.H. Wang, C.L. Lin, Synthesis and optical properties of semiconducting beta-FeSi2 nanocrystals. Appl. Phys. Lett. 82, 3224–3226 (2003)

    Article  CAS  Google Scholar 

  26. J. Xu, R. Yao, Y. Liu, Growth of β-FeSi2 thin film on textured silicon substrate for solar cell application. Appl. Surf. Sci. 257, 10168–10171 (2011)

    Article  CAS  Google Scholar 

  27. J.-S. Huang, K.-W. Lee, Y.-H. Tseng, Analysis of the high conversion efficiencies β-FeSi2 and BaSi2 nip thin film solar cells. J. Nanomater. (2014)

  28. A. Nakanishi, Y. Takiguchi, S. Miyajima, Device simulation of CH3NH3PbI3 perovskite/heterojunction crystalline silicon monolithic tandem solar cells using an n-type a-Si:H/p-type µc-Si1–xOx: H tunnel junction. Phys. Status Solidi (A) 213, 1997–2002 (2016)

    Article  CAS  Google Scholar 

  29. A. Lambertz, T. Grundler, F. Finger, Hydrogenated amorphous silicon oxide containing a microcrystalline silicon phase and usage as an intermediate reflector in thin-film silicon solar cells. J. Appl. Phys. 109, 113109 (2011)

    Article  Google Scholar 

  30. A. Pathania, R. Pandey, J. Madan, R. Sharma, Design and simulation of novel perovskite/Mg 2 Si based monolithic tandem solar cell with 25.5% conversion efficiency, in 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) (2019), pp. 1049–1051

  31. S. Sarkar, V. Gupta, M. Kumar, J. Schubert, P.T. Probst, J. Joseph et al., Hybridized guided-mode resonances via colloidal plasmonic self-assembled grating. ACS Appl. Mater. Interfaces 11, 13752–13760 (2019)

    Article  CAS  Google Scholar 

  32. L.J. Phillips, A.M. Rashed, R.E. Treharne, J. Kay, P. Yates, I.Z. Mitrovic et al., Dispersion relation data for methylammonium lead triiodide perovskite deposited on a (100) silicon wafer using a two-step vapour-phase reaction process. Data Brief. 5, 926–928 (2015)

    Article  Google Scholar 

  33. Y. Jiang, I. Almansouri, S. Huang, T. Young, Y. Li, Y. Peng et al., Optical analysis of perovskite/silicon tandem solar cells. J. Mater. Chem. C 4, 5679–5689 (2016)

    Article  CAS  Google Scholar 

  34. R. Varache, C. Leendertz, M. Gueunier-Farret, J. Haschke, D. Muñoz, L. Korte, Investigation of selective junctions using a newly developed tunnel current model for solar cell applications. Sol. Energy Mater. Sol. Cells 141, 14–23 (2015)

    Article  CAS  Google Scholar 

  35. R. Pandey, A.P. Saini, R. Chaujar, Numerical simulations: toward the design of 18.6% efficient and stable perovskite solar cell using reduced cerium oxide based ETL. Vacuum 159, 173–181 (2019)

    Article  CAS  Google Scholar 

  36. J. Burdick, T. Glatfelter, Spectral response and I-V measurements of tandem amorphous-silicon alloy solar cells. Solar Cells 18, 301–314 (1986)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Rahul Pandey is grateful to SERB, Ministry of Science and Technology, Government of India for sanction of project grant under the Start-up Research Grant (SRG) scheme with file number: SRG/2019/000941. Team of authors acknowledge the time spent by all other members of VLSI center of excellence, Chitkara University, Punjab, India for useful discussions to give a focused direction to this research work. Permission from administration of Chitkara University for providing all the support to carry on this research work is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rahul Pandey, Jaya Madan or Rajnish Sharma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pathania, A., Pandey, R., Madan, J. et al. Design and optimization of 26.3% efficient perovskite/FeSi2 monolithic tandem solar cell. J Mater Sci: Mater Electron 31, 15218–15224 (2020). https://doi.org/10.1007/s10854-020-04086-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04086-z

Navigation