Abstract
We investigated the magnetic-field-dependent microwave absorption in polycrystalline La0.6Sr0.4Mn1-xGaxO3 samples (x = 0.0–0.3) over a wide frequency spectrum (f = 0.1–4 GHz) and up to a magnetic field of Hdc= 2.5 kOe at room temperature. The field dependence of microwave power absorption (ΔP) in each sample exhibits a peak at a critical value of Hdc and the peak moves towards higher fields as frequency increases. The shift is at a faster rate for x = 0.2 and 0.3 compared to x = 0.01 and 0.1. Based on the line shape analysis, we attribute the observed features to ferromagnetic resonance for x ≤ 0.1 and a combined effect of electron spin resonance and superparamagnetic resonance for x ≥ 0.2. Our results are also verified by magnetic resonance spectra recorded using a coplanar waveguide spectrometer. We extracted the gyromagnetic ratio, saturation magnetization, and anisotropy field in our samples. Frequency-tunable microwave absorption at resonance found in these materials will be of interest for high-frequency device applications.
This is a preview of subscription content,
to check access.







Data availability
Data and material used in this manuscript will be available upon request to the corresponding author.
References
F. Qin, C. Brosseau, J. Appl. Phys. 111, 061301 (2012)
V. Shukla, Nanoscale Adv. 1, 1640 (2019)
M. Jaroszewski, S. Thomas, A.V. Rane (eds.), Advanced Materials for Electromagnetic Shielding: Fundamentals, Properties, and Applications, Chapter 1 (Wiley, New Jersy, 2018), pp. 1–10
P.A. Miles, W.B. Westphal, A. von Hippel, Rev. Mod. Phys. 29, 279 (1957)
U. Özgur, Y. Alivov, H. Morkoç, J. Mater. Sci. Mater. Electron. 20, 789 (2009)
M.H. Al-Saleh, U. Sundararaj, J. Phys. D Appl. Phys. 46, 035304 (2012)
M. Zhou, F. Lu, T. Lv, X. Yang, W. Xia, X. Shen, H. He, X. Zeng, J. Phys. D Appl. Phys. 48, 215305 (2015)
H.K. Choudhary, R. Kumar, S.P. Pawar, S. Bose, B. Sahoo, J. Electr. Mater. 49, 1618 (2020)
H.K. Choudhary, R. Kumar, S.P. Pawar, U. Sundararaj, B. Sahoo, Carbon 164, 357 (2020).
R. Kumar, H.K. Choudhary, A.V. Anupama, A.V. Menon, S.P. Pawar, S. Bose, B. Sahoo, New J. Chem. 43, 5568 (2019)
H.A. Reshi, A.P. Singh, S. Pillai, R.S. Yadav, S.K. Dhawan, V. Shelke, J. Mater. Chem. C 3, 820 (2015)
Y.L. Cheng, J.M. Dai, X.B. Zhu, D.J. Wu, Z.R. Yang, Y.P. Sun, Nanoscale Res. Lett. 4, 1153 (2009)
S. Zhang, Q. Cao, Mater. Sci. Eng. B 177, 678 (2012)
S.D. Tyagi, S.E. Lofland, M. Dominguez, S.M. Bhagat, C. Kwon, M.C. Robson, R. Ramesh, T. Venkatesan, Appl. Phys. Lett. 68, 2893 (1996)
A. Rinkevich, A. Nossov, V. Vassiliev, V. Ustinov, Phys. Stat. Sol. (A) 179, 221 (2000)
V.V. Srinivasu, S.E. Lofland, S.M. Bhagat, K. Ghosh, S.D. Tyagi, J. Appl. Phys. 86, 1067 (1999)
M. Golosovksky, P. Monod, P.K. Muduli, R. Budhani, Phys. Rev. B 85, 184418 (2012)
D.L. Lyfar, S.M. Ryabchenko, V.N. Krivoruchko, S.I. Khartsev, A.M. Grishin, Phys. Rev. B 69, 100409 (2004)
M. Golosovksky, P. Monod, P.K. Muduli, R. Budhani, L. Machin, P. Perna, Phys. Rev. B 76, 184414 (2007)
A. Chanda, U. Chaudhuri, R. Das, R. Mahendiran, J. Appl. Phys. 126, 08390 (2019)
D. Kumar, S.J. Pennycook, A. Lupini, G. Duscher, A. Tiwari, J. Narayan, Appl. Phys. Lett. 81, 4204 (2002)
P. Dey, T.K. Nath, A. Banerjee, Appl. Phys. Lett. 91, 012504 (2007)
B.D. Cullity, Introduction to Magnetic Materials (Addison-Wesley, Reading, MA, 1974), p. 94
A. Shengelaya, G. Zhao, H. Keller, K.A. Müller, B.I. Kochelaev, Phys. Rev. B 61, 5888 (2000)
A.H. Morish, The Physical Principles of Magnetism (Wiely, New York, 1965), p. 620
Y.-Y. Song, S. Kalarickal, C.E. Patton, J. Appl. Phys. 94, 5103 (2003)
P. Dϋrrenfeld, F. Gerhard, J. Chico, R.K. Dumas, M. Ranjbar, A. Bergman, L. Bergqvist, A. Delin, C. Gould, L.W. Molenkamp, J. Akerman, Phys. Rev. B 92, 214424 (2015)
C. Kittel, Phys. Rev. 73, 155 (1948)
Y.A. Koksharov, S.P. Gubin, I.D. Kosobudsky, M. Beltran, Y. Khodorkovsky, A.M. Tishin, J. Appl. Phys. 88, 1587 (2000)
V.K. Sharma, F. Waldner, J. Appl. Phys. 48, 4298 (1977)
V.N. Krivoruchko, A.I. Marchenko, A.A. Prokhorov, Low Temp. Phys. 33, 433 (2007)
D.J. Craik (ed.), Magnetic Oxides Part 2 (Wiley, New York, 1975), pp. 621–633
S.E. Lofland, S.M. Bhagat, S.D. Tyagi, Y.M. Mukovskii, S.G. Karabashev, A.M. Balbashshov, J. Appl. Phys. 80, 3592 (1996)
Acknowledgments
R. M. thanks to the Ministry of Education for supporting this work (Grant Nos: R144-000-381-112 and R144-000-404-114).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflicts of interest
Authors declare that they have no conflicts of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Chanda, A., Mahendiran, R. Low-field microwave absorption in Ga-doped polycrystalline La0.6Sr0.4MnO3 in the frequency range from 0.1 to 4 GHz. J Mater Sci: Mater Electron 31, 15175–15183 (2020). https://doi.org/10.1007/s10854-020-04081-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10854-020-04081-4