Skip to main content
Log in

Low-field microwave absorption in Ga-doped polycrystalline La0.6Sr0.4MnO3 in the frequency range from 0.1 to 4 GHz

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We investigated the magnetic-field-dependent microwave absorption in polycrystalline La0.6Sr0.4Mn1-xGaxO3 samples (x = 0.0–0.3) over a wide frequency spectrum (f = 0.1–4 GHz) and up to a magnetic field of Hdc= 2.5 kOe at room temperature. The field dependence of microwave power absorption (ΔP) in each sample exhibits a peak at a critical value of Hdc and the peak moves towards higher fields as frequency increases. The shift is at a faster rate for x = 0.2 and 0.3 compared to x = 0.01 and 0.1. Based on the line shape analysis, we attribute the observed features to ferromagnetic resonance for x ≤ 0.1 and a combined effect of electron spin resonance and superparamagnetic resonance for x ≥ 0.2. Our results are also verified by magnetic resonance spectra recorded using a coplanar waveguide spectrometer. We extracted the gyromagnetic ratio, saturation magnetization, and anisotropy field in our samples. Frequency-tunable microwave absorption at resonance found in these materials will be of interest for high-frequency device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data and material used in this manuscript will be available upon request to the corresponding author.

References

  1. F. Qin, C. Brosseau, J. Appl. Phys. 111, 061301 (2012)

    Article  Google Scholar 

  2. V. Shukla, Nanoscale Adv. 1, 1640 (2019)

    Article  Google Scholar 

  3. M. Jaroszewski, S. Thomas, A.V. Rane (eds.), Advanced Materials for Electromagnetic Shielding: Fundamentals, Properties, and Applications, Chapter 1 (Wiley, New Jersy, 2018), pp. 1–10

    Book  Google Scholar 

  4. P.A. Miles, W.B. Westphal, A. von Hippel, Rev. Mod. Phys. 29, 279 (1957)

    Article  CAS  Google Scholar 

  5. U. Özgur, Y. Alivov, H. Morkoç, J. Mater. Sci. Mater. Electron. 20, 789 (2009)

    Article  Google Scholar 

  6. M.H. Al-Saleh, U. Sundararaj, J. Phys. D Appl. Phys. 46, 035304 (2012)

    Article  Google Scholar 

  7. M. Zhou, F. Lu, T. Lv, X. Yang, W. Xia, X. Shen, H. He, X. Zeng, J. Phys. D Appl. Phys. 48, 215305 (2015)

    Article  Google Scholar 

  8. H.K. Choudhary, R. Kumar, S.P. Pawar, S. Bose, B. Sahoo, J. Electr. Mater. 49, 1618 (2020)

    Article  CAS  Google Scholar 

  9. H.K. Choudhary, R. Kumar, S.P. Pawar, U. Sundararaj, B. Sahoo, Carbon 164, 357 (2020).

    Article  CAS  Google Scholar 

  10. R. Kumar, H.K. Choudhary, A.V. Anupama, A.V. Menon, S.P. Pawar, S. Bose, B. Sahoo, New J. Chem. 43, 5568 (2019)

    Article  CAS  Google Scholar 

  11. H.A. Reshi, A.P. Singh, S. Pillai, R.S. Yadav, S.K. Dhawan, V. Shelke, J. Mater. Chem. C 3, 820 (2015)

    Article  CAS  Google Scholar 

  12. Y.L. Cheng, J.M. Dai, X.B. Zhu, D.J. Wu, Z.R. Yang, Y.P. Sun, Nanoscale Res. Lett. 4, 1153 (2009)

    Article  CAS  Google Scholar 

  13. S. Zhang, Q. Cao, Mater. Sci. Eng. B 177, 678 (2012)

    Article  CAS  Google Scholar 

  14. S.D. Tyagi, S.E. Lofland, M. Dominguez, S.M. Bhagat, C. Kwon, M.C. Robson, R. Ramesh, T. Venkatesan, Appl. Phys. Lett. 68, 2893 (1996)

    Article  CAS  Google Scholar 

  15. A. Rinkevich, A. Nossov, V. Vassiliev, V. Ustinov, Phys. Stat. Sol. (A) 179, 221 (2000)

    Article  CAS  Google Scholar 

  16. V.V. Srinivasu, S.E. Lofland, S.M. Bhagat, K. Ghosh, S.D. Tyagi, J. Appl. Phys. 86, 1067 (1999)

    Article  CAS  Google Scholar 

  17. M. Golosovksky, P. Monod, P.K. Muduli, R. Budhani, Phys. Rev. B 85, 184418 (2012)

    Article  Google Scholar 

  18. D.L. Lyfar, S.M. Ryabchenko, V.N. Krivoruchko, S.I. Khartsev, A.M. Grishin, Phys. Rev. B 69, 100409 (2004)

    Article  Google Scholar 

  19. M. Golosovksky, P. Monod, P.K. Muduli, R. Budhani, L. Machin, P. Perna, Phys. Rev. B 76, 184414 (2007)

    Article  Google Scholar 

  20. A. Chanda, U. Chaudhuri, R. Das, R. Mahendiran, J. Appl. Phys. 126, 08390 (2019)

    Google Scholar 

  21. D. Kumar, S.J. Pennycook, A. Lupini, G. Duscher, A. Tiwari, J. Narayan, Appl. Phys. Lett. 81, 4204 (2002)

    Article  CAS  Google Scholar 

  22. P. Dey, T.K. Nath, A. Banerjee, Appl. Phys. Lett. 91, 012504 (2007)

    Article  Google Scholar 

  23. B.D. Cullity, Introduction to Magnetic Materials (Addison-Wesley, Reading, MA, 1974), p. 94

    Google Scholar 

  24. A. Shengelaya, G. Zhao, H. Keller, K.A. Müller, B.I. Kochelaev, Phys. Rev. B 61, 5888 (2000)

    Article  CAS  Google Scholar 

  25. A.H. Morish, The Physical Principles of Magnetism (Wiely, New York, 1965), p. 620

    Google Scholar 

  26. Y.-Y. Song, S. Kalarickal, C.E. Patton, J. Appl. Phys. 94, 5103 (2003)

    Article  CAS  Google Scholar 

  27. P. Dϋrrenfeld, F. Gerhard, J. Chico, R.K. Dumas, M. Ranjbar, A. Bergman, L. Bergqvist, A. Delin, C. Gould, L.W. Molenkamp, J. Akerman, Phys. Rev. B 92, 214424 (2015)

    Article  Google Scholar 

  28. C. Kittel, Phys. Rev. 73, 155 (1948)

    Article  CAS  Google Scholar 

  29. Y.A. Koksharov, S.P. Gubin, I.D. Kosobudsky, M. Beltran, Y. Khodorkovsky, A.M. Tishin, J. Appl. Phys. 88, 1587 (2000)

    Article  CAS  Google Scholar 

  30. V.K. Sharma, F. Waldner, J. Appl. Phys. 48, 4298 (1977)

    Article  CAS  Google Scholar 

  31. V.N. Krivoruchko, A.I. Marchenko, A.A. Prokhorov, Low Temp. Phys. 33, 433 (2007)

    Article  CAS  Google Scholar 

  32. D.J. Craik (ed.), Magnetic Oxides Part 2 (Wiley, New York, 1975), pp. 621–633

    Google Scholar 

  33. S.E. Lofland, S.M. Bhagat, S.D. Tyagi, Y.M. Mukovskii, S.G. Karabashev, A.M. Balbashshov, J. Appl. Phys. 80, 3592 (1996)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

R. M. thanks to the Ministry of Education for supporting this work (Grant Nos: R144-000-381-112 and R144-000-404-114).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Mahendiran.

Ethics declarations

Conflicts of interest

Authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chanda, A., Mahendiran, R. Low-field microwave absorption in Ga-doped polycrystalline La0.6Sr0.4MnO3 in the frequency range from 0.1 to 4 GHz. J Mater Sci: Mater Electron 31, 15175–15183 (2020). https://doi.org/10.1007/s10854-020-04081-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04081-4

Navigation