Skip to main content
Log in

Synthesis and magnetic properties of stable cobalt nanoparticles decorated reduced graphene oxide sheets in the aqueous medium

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We have synthesized cobalt nanoparticles-reduced graphene oxide (Co-RGO) nanocomposites. The Co NPs achieve shape variation in different nanocomposites due to the strategic use of variety in the preparation techniques. The transmission electron microscope image of composites confirms the decoration of different shapes of Co NPs on RGO sheets. The magnetic study with the variation of temperature indicates a change in the form of hysteresis loops. This is due to the transition from ferromagnetic to superparamagnetic behavior. We found that cubic-shaped Co NPs while decorating RGO show the highest values for some critical magnetic parameters. Coercivity, magnetic moment, and squareness ratio are these parameters. Besides, the nanocomposite-impregnated aqueous sols are found to be quite stable and could be a potential candidate for inkjet printing and ferrofluid as the squareness ratio (Mr/MS) is very small.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. H.B. Jeon, P.V. Tsalu, J.W. Ha, Sci. Rep. 9, 13635 (2019)

    Article  Google Scholar 

  2. Y. Li, B. Tan, Y. Wu, Nano Lett. 8, 265 (2008)

    Article  CAS  Google Scholar 

  3. M.M. Shahid, P. Rameshkumar, A. Pandikumar, H.N. Lim, Y.H. Ng, N.M. Huang, J. Mater. Chem. A 3, 14458 (2015)

    Article  CAS  Google Scholar 

  4. T. Gan, J. Li, H. Li, Y. Liu, Z. Xu, Nanoscale 11, 7839 (2019)

    Article  CAS  Google Scholar 

  5. T.R. Das, R. Madhuri, P.K. Sharma, AIP Conf. Proc. 1832, 050015 (2017). https://doi.org/10.1063/1.4980248

    Article  CAS  Google Scholar 

  6. M.M. Shahid, A. Pandikumar, A.M. Golsheikh, N.M. Huang, H.N. Lim, RSC Adv. 4, 62793 (2014)

    Article  CAS  Google Scholar 

  7. I. Torres-Díaz, C. Rinaldi, Soft Matter 10, 8584 (2014)

    Article  Google Scholar 

  8. N. Venkatesha, P. Poojar, S. Geethanath, C. Srivastava, Mater. Res. Express 1, 045008 (2014)

    Article  Google Scholar 

  9. M. Hoehn, E. Kustermann, J. Blunk, D. Wiedermann, T. Trapp, S. Wecker, M. Focking, H. Arnold, J. Hescheler, B.K. Fleischmann, W. Schwindt, C. Buhrle, Proc. Natl. Acad. Sci. 99, 16267 (2002)

    Article  CAS  Google Scholar 

  10. G. Wang, Y. Ma, Z. Wei, M. Qi, Chem. Eng. J. 289, 150 (2016)

    Article  CAS  Google Scholar 

  11. A.V. Krasheninnikov, P.O. Lehtinen, A.S. Foster, P. Pyykkö, R.M. Nieminen, Phys. Rev. Lett. 102, 126807 (2009)

    Article  CAS  Google Scholar 

  12. A.J. Akhtar, A. Gupta, B. Kumar Shaw, S.K. Saha, Appl. Phys. Lett. 103, 242902 (2013)

    Article  Google Scholar 

  13. Y. Yao, C. Xu, J. Qin, F. Wei, M. Rao, S. Wang, Ind. Eng. Chem. Res. 52, 17341 (2013)

    Article  CAS  Google Scholar 

  14. J. Ding, B. Li, Y. Liu, X. Yan, S. Zeng, X. Zhang, L. Hou, Q. Cai, J. Zhang, J. Mater. Chem. A 3, 832 (2015)

    Article  CAS  Google Scholar 

  15. W.S. Hummers, R.E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958)

    Article  CAS  Google Scholar 

  16. S. Abdolhosseinzadeh, H. Asgharzadeh, H. Seop Kim, Sci. Rep. 5, 10160 (2015)

    Article  CAS  Google Scholar 

  17. L.T. Lu, L.D. Tung, I. Robinson, D. Ung, B. Tan, J. Long, A.I. Cooper, D.G. Fernig, N.T.K. Thanh, J. Mater. Chem. 18, 2453 (2008)

    Article  CAS  Google Scholar 

  18. N. Shukla, E.B. Svedberg, J. Ell, A.J. Roy, Mater. Lett. 60, 1950 (2006)

    Article  CAS  Google Scholar 

  19. O. Mondal, S. Mitra, A. Datta, D. Chakravorty, M. Pal, Mater. Des. 101, 204 (2016)

    Article  CAS  Google Scholar 

  20. C. Jiang, C.W. Leung, P.W.T. Pong, Nanoscale Res. Lett. 11, 189 (2016)

    Article  Google Scholar 

  21. S.L. Tripp, S.V. Pusztay, A.E. Ribbe, A. Wei, J. Am. Chem. Soc. 124, 7914 (2002)

    Article  CAS  Google Scholar 

  22. J.A. Delgado, C. Claver, S. Castillón, D. Curulla-Ferré, V.V. Ordomsky, C. Godard, Appl. Catal. Gen. 513, 39 (2016)

    Article  CAS  Google Scholar 

  23. Z.-S. Wu, W. Ren, L. Wen, L. Gao, J. Zhao, Z. Chen, G. Zhou, F. Li, H.-M. Cheng, ACS Nano 4, 3187 (2010)

    Article  CAS  Google Scholar 

  24. J.L.S. Gascho, S.F. Costa, A.A.C. Recco, S.H. Pezzin, J. Nanomater. 2019, 1 (2019)

    Article  Google Scholar 

  25. P.-G. Ren, D.-X. Yan, X. Ji, T. Chen, Z.-M. Li, Nanotechnology 22, 055705 (2011)

    Article  Google Scholar 

  26. H.-H. Huang, R.K. Joshi, K.K.H. De Silva, R. Badam, M. Yoshimura, J. Membr. Sci. 572, 12 (2019)

    Article  CAS  Google Scholar 

  27. D. Matsuura, T. Kizuka, J. Nanomater. 2012, 1 (2012)

    Article  Google Scholar 

  28. O. Mondal, S. Mitra, M. Pal, A. Datta, S. Dhara, D. Chakravorty, Mater. Chem. Phys. 161, 123 (2015)

    Article  CAS  Google Scholar 

  29. C. Gómez-Navarro, J.C. Meyer, R.S. Sundaram, A. Chuvilin, S. Kurasch, M. Burghard, K. Kern, U. Kaiser, Nano Lett. 10, 1144 (2010)

    Article  Google Scholar 

  30. N. Singh, D. Kothari, J.R. Ansari, M. Pal, S. Mandal, S. Dhara, A. Datta, J. Phys. Chem. C 123, 10557 (2019)

    Article  CAS  Google Scholar 

  31. M.J. Allen, V.C. Tung, R.B. Kaner, Chem. Rev. 110, 132 (2010)

    Article  CAS  Google Scholar 

  32. K.N. Kudin, B. Ozbas, H.C. Schniepp, R.K. Prud’homme, I.A. Aksay, R. Car, Nano Lett. 8, 36 (2008)

    Article  CAS  Google Scholar 

  33. Y. Zhou, Q. Bao, L.A.L. Tang, Y. Zhong, K.P. Loh, Chem. Mater. 21, 2950 (2009)

    Article  CAS  Google Scholar 

  34. T. Van Khai, H.G. Na, D.S. Kwak, Y.J. Kwon, H. Ham, K.B. Shim, H.W. Kim, J. Mater. Chem. 22, 17992 (2012)

    Article  Google Scholar 

  35. K.L. Routray, D. Behera, J. Mater. Sci. Mater. Electron. 29, 14248 (2018)

    Article  CAS  Google Scholar 

  36. S.R. Mohapatra, A. Swain, C.S. Yadav, S.D. Kaushik, A.K. Singh, RSC Adv. 6, 112282 (2016)

    Article  CAS  Google Scholar 

  37. P. Mondal, C. Balomajumder, B. Mohanty, J. Hazard. Mater. 144, 420 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Neelam Singh is thankful to Guru Gobind Singh Indraprastha University, New Delhi, for providing financial assistance in the form of Indraprastha Research Fellowship (IPRF). Prof Datta is grateful to the Guru Gobind Singh Indraprastha University, New Delhi, for the FRGS grant (GGSIPU/DRC/FRGS/2019/8) and the grant of DST for FIST grant (SR/FST/PSI-167/2011(C). Authors are thankful to the Center for Research in Nanoscience and Technology, University of Calcutta, India, for helping in TEM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anindya Datta.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest involved in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, N., Ansari, J.R., Pal, M. et al. Synthesis and magnetic properties of stable cobalt nanoparticles decorated reduced graphene oxide sheets in the aqueous medium. J Mater Sci: Mater Electron 31, 15108–15117 (2020). https://doi.org/10.1007/s10854-020-04075-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04075-2

Navigation