Skip to main content
Log in

Lanthanum-doped BiFeO3/ZrO2 gate stack for ferroelectric field effect transistors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A metal–ferroelectric–insulator–semiconductor (MFIS) structure was fabricated with lanthanum (La)-doped BiFeO3 as ferroelectric and ZrO2 as the high-k insulator layer. The BiFeO3 film with 5 M doped La was prepared with sol–gel and ZrO2 film was physically deposited with rf sputtering. Films structural characteristics were obtained using X-ray diffraction and scanning electron microscopy (SEM). The ferroelectric film shows the perovskite structure with orientation (110)/(104) when annealed in the range from 400 to 700 °C. The dielectric film shows an amorphous structure for the same range of annealing temperature. Electrical and ferroelectric properties were obtained by fabricating and characterizing metal/ferroelectric/silicon (MFS), metal/ferroelectric/metal (MFM), metal/insulator/silicon (MIS), metal/ferroelectric/insulator/metal (MFIM) and metal/ferroelectric/insulator/silicon (MFIS) capacitor structures with ferroelectric film of 200 nm thickness and dielectric film of various thicknesses. MFS structure shows a maximum memory window of 3.5 V and leakage current density of 1.4 × 10–8 A/cm2 with ferroelectric film annealed at 500 °C. The memory window was further improved to 6.62 V and leakage current to the order 10–10 A/cm2 with the introduction of 9 nm insulator layer between ferroelectric and silicon. The same device shows an excellent endurance property tested for 1012 cycles and data retention tested for 5.56 h. The device shows a breakdown of 43 V, which is 9 V higher than the MFS structure. To the best of author’s knowledge, this is the first report to integrate La-doped BiFeO3 on ZrO2 (high-k) dielectric for non-volatile memory applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Data and material available.

References

  1. J.F. Scott, Science 315, 954 (2007)

    Article  CAS  Google Scholar 

  2. T. Mikolajick, U. Schroeder, S. Slesazeck, IEEE Trans. Electron Devices 67, 1434 (2020)

    Article  CAS  Google Scholar 

  3. F. Microelectronics, FRAM Guide Book (2008)

  4. Fujitsu-Semiconductor, “ FRAM ”, High Quality and High Reliability Non-Volatile Memory with Matured Manufacturing Experience (n.d.).

  5. J.F. Scott, C.A. Paz De Araujo, Science 246, 1400 (1989)

    Article  CAS  Google Scholar 

  6. G.R. Fox, F. Chu, T. Davenport, J. Vac. Sci. Technol. B 19, 1967 (2001)

    Article  CAS  Google Scholar 

  7. R.E. Jones, P.D. Maniar, R. Moazzami, P. Zurcher, J.Z. Witowski, Y.T. Lii, P. Chu, S.J. Gillespie, Thin Solid Films 270, 584 (1995)

    Article  CAS  Google Scholar 

  8. S.Y. Wu, IEEE Trans. Electron Devices 21, 499 (1974)

    Article  Google Scholar 

  9. Y. Higuma, Y. Matsui, M. Okuyama, T. Nakagawa, Y. Hamakawa, Jpn. J. Appl. Phys. 17, 209 (1978)

    Article  Google Scholar 

  10. K. Sugibuchi, Y. Kurogi, N. Endo, J. Appl. Phys. 46, 2877 (1975)

    Article  CAS  Google Scholar 

  11. J.K. Park, W.W. Grannemann, in 1975 International Electron Devices Meeting, (IRE, 1975), pp. 463–465

  12. Y. Hamakawa, Y. Matsui, Y. Higuma, T. Nakagawa, in (Institute of Electrical and Electronics Engineers (IEEE), 2008), pp. 294–297

  13. M. Takahashi, H. Sugiyama, T. Nakaiso, K. Kodama, M. Noda, M. Okuyama, Jpn. J. Appl. Phys. 1(40), 2923 (2001)

    Article  Google Scholar 

  14. X. Lu, in High-k Gate Dielectr. C. Technol. (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2012), pp. 471–499

  15. N. Setter, D. Damjanovic, L. Eng, G. Fox, S. Gevorgian, S. Hong, A. Kingon, H. Kohlstedt, N.Y. Park, G.B. Stephenson, I. Stolitchnov, A.K. Taganstev, D.V. Taylor, T. Yamada, S. Streiffer, J. Appl. Phys. 100, 051606 (2006)

    Article  Google Scholar 

  16. J. Silva, A. Reyes, H. Esparza, H. Camacho, L. Fuentes, Integr. Ferroelectr. 126, 47–59 (2011)

    Article  CAS  Google Scholar 

  17. B.K. Das, B. Ramachandran, A. Dixit, M.S. Ramachandra Rao, R. Naik, A.T. Sathyanarayana, T.N. Sairam, G. Amarendra, J. Alloys Compd. 832, 154754 (2020)

    Article  CAS  Google Scholar 

  18. K.P. Remya, D. Prabhu, R.J. Joseyphus, A.C. Bose, C. Viswanathan, N. Ponpandian, Mater. Des. 192, 108694 (2020)

    Article  CAS  Google Scholar 

  19. G. Dhillon, I.S. Sandhu, M. Chitkara, in 3rd International Conference on Condensed Matter & Applied Physics (AIP Publishing, 2020), p. 020048

  20. P. Fischer, M. Polomska, I. Sosnowska, M. Szymanski, J. Phys. C 13, 1931 (1980)

    Article  CAS  Google Scholar 

  21. Z. Chen, J. Hu, Z. Lu, X. He, Ceram. Int. 37, 2359 (2011)

    Article  CAS  Google Scholar 

  22. J.Z. Huang, Y. Shen, M. Li, C.W. Nan, J. Appl. Phys. 110, 094106 (2011)

    Article  Google Scholar 

  23. L.V. Costa, R.C. Deus, C.R. Foschini, E. Longo, M. Cilense, A.Z. Simões, Mater. Chem. Phys. 144, 476 (2014)

    Article  CAS  Google Scholar 

  24. X. Xu, T. Guoqiang, R. Huijun, X. Ao, Ceram. Int. 39, 6223 (2013)

    Article  CAS  Google Scholar 

  25. H. Liu, Y. Sun, J. Phys. D 40, 7530 (2007)

    Article  CAS  Google Scholar 

  26. A.Z. Simões, R.F. Pianno, E.C. Aguiar, E. Longo, J.A. Varela, J. Alloys Compd. 479, 274 (2009)

    Article  Google Scholar 

  27. J. Robertson, EPJ Appl. Phys. 28, 265 (2004)

    Article  CAS  Google Scholar 

  28. T. Rojac, A. Bencan, G. Drazic, N. Sakamoto, H. Ursic, B. Jancar, G. Tavcar, M. Makarovic, J. Walker, B. Malic, D. Damjanovic, Nat. Mater. 16, 322 (2017)

    Article  CAS  Google Scholar 

  29. T. Pi-ChunJuan, Y.W. Liu, J. Appl. Phys. 109, 091604 (2011)

    Article  Google Scholar 

  30. M.S. Bozgeyik, J.S. Cross, H. Ishiwara, K. Shinozaki, J. Electroceram. 28, 158 (2012)

    Article  CAS  Google Scholar 

  31. W. Zhang, M. Takahashi, S. Sakai, Materials (Basel) 12, 399 (2019)

    Article  CAS  Google Scholar 

  32. R.K. Jha, P. Singh, M. Goswami, B.R. Singh, J. Mater. Sci. Mater. Electron. 30, 15224 (2019)

    Article  CAS  Google Scholar 

  33. R.K. Jha, P. Singh, U. Kashniyal, M. Goswami, B.R. Singh, Appl. Phys. A 126, 1 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere thanks to Prof. P. Nagabhushan, Director, Indian Institute of Information Technology-Allahabad for his constant support and encouragement.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Singh.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A., Singh, S. Lanthanum-doped BiFeO3/ZrO2 gate stack for ferroelectric field effect transistors. J Mater Sci: Mater Electron 31, 16189–16198 (2020). https://doi.org/10.1007/s10854-020-04073-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04073-4

Navigation