Skip to main content
Log in

Effect of metal-support couplings on the photocatalytic performance of Au-decorated ZnO nanorods

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We reported the effectiveness of photocatalysts based on ZnO nanorods in the pollutant degradation. UV–Vis adsorption and photoluminescence (PL) were used to verify the incorporation of the plasmonic Au NPs on the ZnO nanorods. The strong electronic interaction between Au NPs and the defect sites of ZnO can be caused by the resonant coupling near the surface of ZnO, which in turn suppresses the defect-related emission band. We significantly enhanced photocatalytic performance by the coupling ZnO nanorods to the plasmonic gold nanoparticles. Due to the surface plasmon resonance and the localized Au–ZnO Schottky barrier, the Au–ZnO nanorods demonstrated better photocatalytic efficiency (96% in 60 min) than pure ZnO nanorods (only 42% in 60 min) under visible light irradiation of the halogen lamp. The correlation between metal-support couplings and photocatalytic performance is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. C. Clavero, Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat. Photonics 8, 95–103 (2014)

    Article  CAS  Google Scholar 

  2. L. Schmidt-Mende, J.L. MacManus-Driscoll, ZnO—nanostructures, defects, and devices. Mater. Today 10, 40–80 (2007)

    Article  CAS  Google Scholar 

  3. Y.K. Mishra, G. Modi, V. Cretu, V. Postica, O. Lupan, T. Reimer, I. Paulowicz, V. Hrkac, W. Benecke, L. Kienle, Direct growth of freestanding ZnO tetrapod networks for multifunctional applications in photocatalysis, UV photodetection, and gas sensing. ACS Appl. Mater. Interfaces 7, 14303–14316 (2015)

    Article  CAS  Google Scholar 

  4. T.T. Do, H.T. Giang, T.T. Do, N.Q. Pham, H.T. Giang, Effects of palladium on the optical and hydrogen sensing characteristics of Pd-doped ZnO nanoparticles. Beilstein J. Nanotechnol. 5, 1261–1267 (2014)

    Article  CAS  Google Scholar 

  5. T.A.T. Do, H.T. Giang, D.V. Huong, P.Q. Ngan, G.H. Thai, D.T. Thu, T.D. Lam, Correlation between photoluminescence spectra with gas sensing and photocatalytic activities in hierarchical ZnO nanostructures. RSC Adv. 7, 9826–9832 (2017)

    Article  Google Scholar 

  6. H. Wu, Z. Zheng, Y. Tang, N.M. Huang, R. Amal, H.N. Lim, Y.H. Ng, Pulsed electrodeposition of CdS on ZnO nanorods for highly sensitive photoelectrochemical sensing of copper (II) ions. Sustain. Mater. Technol. 18, e00075 (2018)

    CAS  Google Scholar 

  7. J. Li, K. Liu, J. Xue, G. Xue, X. Sheng, H. Wang, P. Huo, Y. Yan, CQDs preluded carbon-incorporated 3D burger-like hybrid ZnO enhanced visible-light-driven photocatalytic activity and mechanism implication. J. Catal. 369, 450–461 (2018)

    Article  Google Scholar 

  8. A. Shafi, N. Ahmad, S. Sultana, S. Sabir, M.Z. Khan, Ag2S-Sensitized NiO–ZnO heterostructures with enhanced visible light photocatalytic activity and acetone sensing property. ACS Omega. 4(7), 12905–12918 (2019)

    Article  CAS  Google Scholar 

  9. H. Wu, H.L. Tan, C.Y. Toe, J. Scott, L. Wang, R. Amal, Y.H. Ng, Photocatalytic and photoelectrochemical systems: similarities and differences. Adv Mater 32, e1904717 (2020)

    Article  Google Scholar 

  10. M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 69–96 (1995)

    Article  CAS  Google Scholar 

  11. Y.M. Kudo, Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38, 253–278 (2009)

    Article  CAS  Google Scholar 

  12. T.S. Natarajan, M. Thomas, K. Natarajan, H.C. Bajaj, R.J. Tayade, Study on UV-LED/TiO2 process for degradation of Rhodamine B dye. Chem. Eng. J. 169, 126–134 (2011)

    Article  CAS  Google Scholar 

  13. T.A.T. Do, H.T. Giang, T.B. Hoai, Q.P. Ngan, H.T. Giang, T.T. Do, D.N. Van, D.T. Lam, Surface-plasmon-enhanced ultraviolet emission of Au-decorated ZnO structures for gas sensing and photocatalytic devices. Beilstein J. Nanotechnol. 9, 771–779 (2018)

    Article  CAS  Google Scholar 

  14. S. Sarkar, A. Makhal, T. Bora, S. Baruah, J. Dutta, S.K. Pal, Photoselective excited state dynamics in ZnO–Au nanocomposites and their implications in photocatalysis and dye-sensitized solar cells. Phys. Chem. Chem. Phys. 13, 12488–12496 (2011)

    Article  CAS  Google Scholar 

  15. S.T. Kochuveedu, Y.H. Jang, D.H. Kim, A study on the mechanism for the interaction of light with noble metal-metal oxide semiconductor nanostructures for various photophysical applications. Chem. Soc. Rev. 42, 8467–8493 (2013)

    Article  CAS  Google Scholar 

  16. Z.B. Yu, Y.P. Xie, G. Liu, G.Q. Lu, X.L. Ma, H.M. Cheng, Self-assembled CdS/Au/ZnO heterostructure induced by surface polar charges for efficient photocatalytic hydrogen evolution. J. Mater. Chem. A. 1, 2773–2776 (2013)

    Article  CAS  Google Scholar 

  17. S. Ma, J. Xue, Y. Zhou, Z. Zhang, Photochemical synthesis of ZnO/Ag2O heterostructures with enhanced ultraviolet and visible photocatalytic activity. J. Mater. Chem. A. 2, 7272–7280 (2014)

    Article  CAS  Google Scholar 

  18. Z. Mierczyk, A. Majchrowski, K. Oz’ga, A. Slezak, I.V. Kityk, Simulation of nonlinear optical absorption in ZnSe:Co2+ crystals. Opt. Laser Technol. 38, 558–564 (2006)

    Article  CAS  Google Scholar 

  19. L.B. Deng, X.H. Ding, D.W. Zeng, S.Q. Tian, H.Y. Li, C.S. Xie, Visible-light activate mesoporous WO3 sensors with enhanced formaldehyde-sensing property at room temperature. Sens. Actuators B. 163, 260–266 (2012)

    Article  CAS  Google Scholar 

  20. N.A. Joy, P.H. Rogers, M.I. Nandasiri, S. Thevuthasan, M.A. Carpenter, Plasmonic-based sensing using an array of Au–metal oxide thin films. Anal. Chem. 84, 10437–10444 (2012)

    Article  CAS  Google Scholar 

  21. Y. Mun, S. Park, S. An, C. Lee, H.W. Kim, NO2 gas sensing properties of Au–functionalized porous ZnO nanosheets enhanced by UV irradiation. Ceram. Int. 39, 8615–8622 (2013)

    Article  CAS  Google Scholar 

  22. Y. Tian, T. Tatsuma, Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. J. Am. Chem. Soc. 127, 7632–7637 (2005)

    Article  CAS  Google Scholar 

  23. V.P. Zhdanov, nm-sized metal particles on a semiconductor surface, Schottky model, etc. Surf. Sci. Lett. 512, 331–334 (2002)

    Article  Google Scholar 

  24. M.-H. Liu, Y.-W. Chen, X. Liu, J.-L. Kuo, M.-W. Chu, C.-Y. Mou, Defect-mediated gold substitution doping in ZnO mesocrystals and catalysis in CO oxidation. ACS Catal. 6, 115–122 (2016)

    Article  CAS  Google Scholar 

  25. T. Wang, B. Jin, Z. Jiao, G. Lu, J. Ye, Y. Bi, Photo-directed growth of Au nanowires on ZnO arrays for enhancing photoelectrochemical performances. J. Mater. Chem. A 2, 15553–15559 (2014)

    Article  CAS  Google Scholar 

  26. R. Viter, Z. Balevicius, A. AbouChaaya, I. Baleviciute, S. Tumenas, L. Mikoliunaite, A. Ramanavicius, Z. Gertnere, A. Zalesska, V. Vataman, V. Smyntyna, D. Erts, P. Miele, M. Bechelany, The influence of localized plasmons on the optical properties of Au/ZnO nanostructures. J. Mater. Chem. C 3, 6815–6821 (2015)

    Article  CAS  Google Scholar 

  27. F. Guo, B. Yang, Y. Yuan, Z. Xiao, Q. Dong, Y. Bi, J. Huang, A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection. Nat. Nanotechnol. 7, 798–802 (2012)

    Article  CAS  Google Scholar 

  28. J. Strunk, K. Kähler, X. Xia, M. Comotti, F. Schüth, T. Reinecke, M. Muhler, Au/ZnO as catalyst for methanol synthesis: the role of oxygen vacancies. Appl. Catal. A. 359, 121–128 (2009)

    Article  CAS  Google Scholar 

  29. J.H. Lin, Y.J. Chen, H.Y. Lin, W.F. Hsieh, Two-photon resonance assisted huge nonlinear refraction and absorption in ZnO thin films. J. Appl. Phys. 97, 033526–033531 (2005)

    Article  Google Scholar 

  30. Q.C. Yang, H.Y. Li, C.S. Xie, Q. Zhu, A study of photocurrent spectrum of porous ZnO film sensitized by metal chloride solutions. Appl. Surf. Sci. 263, 465–470 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express appreciation to the Laboratory of Applied Nanotechnology (LAN), Institute of Theoretical and Applied Research, Duy Tan University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. Anh Thu Do or Minh Tan Man.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, T.H., Do, T.A.T., Giang, H.T. et al. Effect of metal-support couplings on the photocatalytic performance of Au-decorated ZnO nanorods. J Mater Sci: Mater Electron 31, 14946–14952 (2020). https://doi.org/10.1007/s10854-020-04056-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04056-5

Navigation