Skip to main content
Log in

Characterization of MgO thin film prepared by spray pyrolysis technique using perfume atomizer

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Transparent conducting magnesium oxide (MgO) thin films are obtained by pyrolytic decomposition of magnesium acetate in a mixture of ethanol and distilled water on to a glass substrate using perfume atomizer. The substrate temperature (Ts) is maintained at 300 °C, 350 °C, 400 °C, and 450 °C for depositing the films and annealed at 450 °C for 4 h. Then the samples were characterized by X-ray diffraction, field emission scanning electron microscope, atomic force microscope, UV–Vis spectroscopy, photoluminescence analyzer, and Raman spectrophotometer for identifying its structure, morphology, topography, bandgap and defect states. The XRD result demonstrates the cubic, polycrystalline nature with (2 0 0) preferred orientation. The presence of MgO2 phase along (2 2 2) plane increases with substrate temperature is noticed. From the SEM monograph, the clusters of spherical grains are observed for all the films and the columnar growth of the MgO film is observed from the AFM topographical image. The surface roughness tends to increase with substrate temperature. The MgO thin films possess two absorption bands and two optical bandgaps. The transmittance of 70% is obtained for MgO film which could be used for optoelectronic device and protective coating applications. The blue and green emission bands are identified from the PL spectrum. The defects in the film are responsible for linear I–V characteristic and the large forward current value implies higher efficiency for solar cell applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. H.S. Jung, J.K. Lee, K.S. Hong, H.J. Youn, J. Appl. Phys. 92, 2855 (2002)

    CAS  Google Scholar 

  2. P.S. Das, A. Dey, A.K. Mandal, N. Dey, A.K. Mukhopadhyay, Surf. Eng. 32(1), 15–20 (2016)

    CAS  Google Scholar 

  3. H.K. Khanfar, A.F. Qasrawi, Mater. Sci. Semicond. Process. 29, 183–187 (2015)

    CAS  Google Scholar 

  4. M.S. Idris, S. Shanmugan, M. Devarajan, W. Maryam, IOP Conf. Series: Earth Environ. Sci. 268, 012118 (2019)

    Google Scholar 

  5. Y. Li, Z. Shi, S. Li, L. Lei, H. Ji, D. Wu, T. Xu, Y. Tian, X. Li, J. Mater. Chem. C. 5, 8355–8360 (2017)

    CAS  Google Scholar 

  6. Y. Gu, X. Yang, Y. Guan, M.A. Migliorato, Y. Zhang, Inorg. Chem. Front. 3, 1130 (2016)

    CAS  Google Scholar 

  7. Y.W. Choi, J. Kim, Thin Solid Films 460, 295–299 (2004)

    CAS  Google Scholar 

  8. P.A. Nistor, P.W. May, J.R. Soc, Interface 14, 0382 (2017)

    Google Scholar 

  9. A.M. Ezhil Raj, M. Jayachandran, C. Sanjeeviraja, CIRP J. Manuf. Sci. Technol. 2, 92–113 (2010)

    Google Scholar 

  10. A. Zerr, R. Boehler, Nature 371(6497), 506–508 (1994)

    CAS  Google Scholar 

  11. E. Scorza, U. Birkenheuer, C. Pisani, J. Chem. Phys. 107(22), 9645–9658 (1997)

    CAS  Google Scholar 

  12. T. Jintakoso, P. Singjai, Curr. Appl. Phys. 9, 1288–1292 (2009)

    Google Scholar 

  13. C.M. Janet, B. Viswanathan, R.P. Viswanath, T.K. Varadarajan, J. Phys. Chem. C 111(28), 10267–10272 (2007)

    CAS  Google Scholar 

  14. P.D. Yang, C.M. Lieber, Science 273(5283), 1836–1840 (1996)

    CAS  Google Scholar 

  15. X.S. Fang, C.H. Ye, L.D. Zhang, J.X. Zhang, J.W. Zhao, P. Yan, Small 1(4), 422–428 (2005)

    CAS  Google Scholar 

  16. D. Zhu, S. Zhao, C. Zheng, D. Chen, Z. He, Mater. Chem. Phys. 143(1), 209–212 (2013)

    CAS  Google Scholar 

  17. A.K. Balta, Ö. Ertek, N. Eker, İ. Okur, Materials Sciences and Applications. 6(1), 40–47 (2015)

    CAS  Google Scholar 

  18. L-q Qi, L-h Liu, S-z Feng, H-y Sun, R-s Han, J. Eur. Ceram. Soc. 37(15), 4727–4731 (2017)

    CAS  Google Scholar 

  19. S.K. Mahadeva, J. Fan, A. Biswas, G.M. Rao, K.S. Sreelatha, L. Belova, K.V. Rao, Mater. Express 3(4), 328–334 (2013)

    CAS  Google Scholar 

  20. A. Chowdhury, J. Kumar, Bull. Mater. Sci. 29(5), 513–521 (2006)

    CAS  Google Scholar 

  21. R. Murugesan, S. Sivakumar, P. Anandan, M. Haris, J. Mater. Sci.: Mater. Electron. 28, 12432–12439 (2017)

    CAS  Google Scholar 

  22. K.V. Dukel’ski, S.K. Evstrop’ev, J. Opt. Technol. 77(1), 45–49 (2010)

    Google Scholar 

  23. V. Skvortsova, L. Trinkler, Adv. Sensors Signals Mater. 150–154 (2010)

  24. H. Guney, Ceram. Int. 44, 7788–7793 (2018)

    CAS  Google Scholar 

  25. N. Kamarulzaman, N. Badar, Adv. Mater. Res. 545, 38–42 (2012)

    CAS  Google Scholar 

  26. F. Yang, Y.H. Lin, J.C. Li, J. Mater. Sci.: Mater. Electron. 30, 14030–14035 (2019)

    CAS  Google Scholar 

  27. S. Valanarasu, V. Dhanasekaran, M. Karunakaran, T.A. Vijayan, R. Chandramohan, T. Mahalingam, J. Mater. Sci.: Mater. Electron. 25, 3846–3853 (2014)

    CAS  Google Scholar 

  28. J.W. Lee, J.-H. Ko, J. Inform. Display. 15(4), 157–161 (2014)

    CAS  Google Scholar 

  29. A.K. Balta, Ö. Ertek, N. Eker, İ. Okur, Mater. Sci. Appl. 6, 40–47 (2015)

    CAS  Google Scholar 

  30. S. Nisatharaju, R. Ayyappa, D. Balamurugan, Res. J. Pharm. Biol. Chem. Sci. 5, 1756–1762 (2014)

    Google Scholar 

  31. A.V. Dyachenko, A.S. Opanasuyk, D.I. Kurbatov, S.B. Bolshanina, V.M. Kuznetsov, PROC. NAP 3, 01PCSI05 (2014)

    Google Scholar 

  32. B. Nourozi, A. Aminian, N. Fili, Y. Zangeneh, A. Boochani, P. Darabi, Results Phys. 12, 2038–2043 (2019)

    Google Scholar 

  33. G. Suárez-Campos, D. Cabrera-German, J.A. García-Valenzuela, M. Cota-Leal, J.L. Fuentes-Ríos, M. Martínez-Gil, H. Hu, M. Sotelo-Lerma, Ceram. Int. 45, 10356–10363 (2019)

    Google Scholar 

  34. Harun Guney, Demet Đskenderoğlu, Can. J. Phys. 96, 804–809 (2018)

    CAS  Google Scholar 

  35. I. Cora, Z. Baji, Z. Fogarassy, Z. Szabó, B. Pécz, Mater. Sci. Semicond. Process. 93, 6–11 (2019)

    CAS  Google Scholar 

  36. S. Aksay, Phys. B 570, 280–284 (2019)

    CAS  Google Scholar 

  37. K. Ravichandran, A. Jansi Santhosam, M. Sridharan, Surf. Interfaces. 18, 100412 (2020)

    Google Scholar 

  38. S. Visweswaran, R. Venkatachalapathy, M. Haris, R. Murugesan, Appl. Phys. A 126, 524 (2020)

    CAS  Google Scholar 

  39. P. Samiyammal, K. Parasuraman, A.R. Balu, Surf. Eng. 35(1), 1–7 (2018)

    Google Scholar 

  40. N. Clament Sagaya Selvam, R. Thinesh Kumar, L. John Kennedy, J. Judith Vijay, J. Alloys Compd. 509(41), 9809–9815 (2011)

    Google Scholar 

  41. S. Sarıtaş, T. Çakıcı, G. Merhan Muğlu, M. Kundakcı, M. Yıldırım, A.I.P. Conf, Proc. 1815, 050013 (2017)

    Google Scholar 

  42. M.A. Farag, M. El-Okr, R.M. Mahani, G.M. Turky, H.H. Afify, IJAETCS. 1(1), 1–9 (2014)

    Google Scholar 

  43. Y.Y.H.S. Kim, N.W. Jang, Y. Yun, New Phys. 67, 136–141 (2017)

    Google Scholar 

  44. G. Selvan, M.P. Abubacker, A.R. Balu, Optik. 127(12), 4943–4947 (2016)

    CAS  Google Scholar 

  45. A.M. Ezhil Raj, L.C. Nehru, M. Jayachandran, C. Sanjeeviraja, Cryst. Res. Technol. 42(9), 867–875 (2007)

    Google Scholar 

  46. O.V. Diachenko, A.S. Opanasuyk, D.I. Kurbatov, N.M. Opanasuyk, O.K. Kononov, D. Nam, H. Cheong, Acta Phys. Pol., A 130(3), 805–810 (2016)

    CAS  Google Scholar 

  47. P. Pło´ciennik, D. Guichaoua, A. Zawadzka, A. Korcala, J. Strzelecki, P. Trzaska, B. Sahraoui, Opt. Quant. Electron. 48(5), 277–288 (2016)

    Google Scholar 

  48. V.E. Henrich, P.A. Cox, The Surface Science of Metals Oxides (Cambridge University, Cambridge, 1994)

    Google Scholar 

  49. S. Ben Ameur, H. BelHadjltaief, B. Duponchel, G. Leroy, M. Amlouk, H. Guermazi, S. Guermazi, Heliyon. 5, e01912 (2019)

    CAS  Google Scholar 

  50. A. Kennedy, K. Viswanathan, K. Pradeev raj, Phys. Lett. A 380, 2842–2848 (2016)

    CAS  Google Scholar 

  51. J.D. Hwang, T.H. Ho, Mater. Sci. Semicond. Process. 71, 396–400 (2017)

    CAS  Google Scholar 

  52. A. Kumar, J. Kumar, J. Phys. Chem. Solids 69, 2764–2772 (2008)

    CAS  Google Scholar 

  53. B.A. Taleatu, E. Omotoso, C. Lal, W.O. Makinde, K.T. Ogundele, E. Ajenifuja, A.R. Lasisi, M.A. Eleruja, G.T. Mola, Surf. Interface Anal. 46(6), 372–377 (2014)

    CAS  Google Scholar 

  54. X. Qin, C. Sui, L. Di, Vacuum 166, 316–322 (2019)

    CAS  Google Scholar 

  55. H. Ahn, D. Lee, Y. Um, Appl. Sci. Converg. Technol. 26(1), 11–15 (2017)

    Google Scholar 

  56. S.K. Mahadeva, J. Fan, A. Biswas, K.S. Sreelatha, L. Belova, K.V. Rao, Nanomaterials 3, 486–497 (2013)

    CAS  Google Scholar 

  57. A.M. El Sayed, Mater. Res. Express. (2018)

  58. B. Rajesh Kumar, T. Subba Rao, Digest J. Nanomater. Biostruct. 7(4), 1881–1889 (2012)

    Google Scholar 

  59. A.-S. Gadallah, M.M. El-Nahass, Adv. Condens. Matter Phys. 2013, 1–11 (2013)

    Google Scholar 

  60. N. Budiredla, A. Kumar, S. Thota, J. Kumar, ISRN Nanomater. 1–8 (2012)

  61. S. Kimiagar, F. Abrinaei, Nanophotonics. 7(1), 243–251 (2018)

    CAS  Google Scholar 

  62. M.C.C. Wobbe, A. Kerridgea, M.A. Zwijnenburg, Phys. Chem. Chem. Phys. 16, 22052–22061 (2014)

    CAS  Google Scholar 

  63. A.M. Ahmed, M. Rabia, M. Shaban, RSC Adv. 10, 14458–14470 (2020)

    CAS  Google Scholar 

  64. J.P. Singh, I. Sulania, J. Prakash, S. Gautam, K.H. Chae, D. Kanjilal, K. Asokan, Adv. Mat. Lett. 3(2), 112–117 (2012)

    Google Scholar 

  65. A.K. Shahi, B.K. Pandey, B.P. Singh, R. Gopal, Adv. Nat. Sci.: Nanosci. Nanotechnol. 7, 035010 (2016)

    Google Scholar 

  66. A.M. Abdelghany, E.M. Abdelrazek, S.I. Badr, M.A. Morsi, Mater. Des. 97, 532–543 (2016)

    CAS  Google Scholar 

  67. K.R. Nemade, S.A. Waghuley, Mater. Sci. Semicond. Process. 39, 781–785 (2015)

    CAS  Google Scholar 

  68. Z.Q. Mamiyev, N.O. Balayeva, Opt. Mater. 46(C), 522–525 (2015)

    CAS  Google Scholar 

  69. N. Jain, N. Marwaha, R. Verma, B.K. Gupta, A.K. Srivastava, RSC Adv. 6, 4960–4968 (2016)

    CAS  Google Scholar 

  70. C.K. Rastogi, S. Saha, S. Sivakumar, R.G.S. Pala, J. Kumar, Phys. Chem. Chem. Phys. 17, 4600–4608 (2015)

    CAS  Google Scholar 

  71. J.H. Lee, H.S. Kim, S.H. Kim, N.W. Jang, Y. Yun, Curr. Appl. Phys. 14, 794–797 (2014)

    Google Scholar 

  72. C.V. Ramana, R.J. Smith, O.M. Hussain, Phys. Stat. Sol. (a) 199(1), R4–R6 (2003)

    CAS  Google Scholar 

  73. S. Islam, N. Bidin, M. Alam Saeed, S. Riaz, M. Aizat, A. Bakar, S. Naseem, K.N. Abbas, M.M. Sanagi, J. Sol-Gel. Sci. Technol. 81, 623–631 (2017)

    CAS  Google Scholar 

  74. T. Amakali, L.S. Daniel, V. Uahengo, N.Y. Dzade, N.H. de Leeuw, Crystals. 10, 132 (2020)

    CAS  Google Scholar 

  75. V. Vasanthi, M. Kottaisamy, K. Anitha, V. Ramakrishnan, Superlattices Microstruct. 106, 174–183 (2017)

    CAS  Google Scholar 

  76. S. Dwivedi Sonam, Investigation of Structural and Transport properties of some transition metal doped chalcogenides, PhD thesis

  77. A.A. Ahmad, A.M. Alsaad, Q.M. Al-Bataineh, M.A. Al-Naafa, Appl. Phys. A 124, 458 (2018)

    Google Scholar 

  78. A.M. Alsaad, A.A. Ahmad, I.A. Qattan, Q.M. Al-Bataineh, Z. Albataineh, Crystals 10, 252 (2020)

    CAS  Google Scholar 

  79. Q.M. Al-Bataineh, A.M. Alsaad, A.A. Ahmad, A. Al-Sawalmih, J. Electron. Mater. 48(8), 5028–5038 (2019)

    CAS  Google Scholar 

  80. S. Kurtaran, I. Akyuz, F. Atay, Appl. Surf. Sci. 265, 709–713 (2013)

    CAS  Google Scholar 

  81. M. Arif, M. Shkir, V. Ganesh, A. Singh, H. Algarni, S. AlFaify, Superlattices Microstruct. 129, 230–239 (2019)

    CAS  Google Scholar 

  82. L. Qin, J. Zhao, X. Zou, Mater. Chem. Phys. 113(1), 468–473 (2009)

    CAS  Google Scholar 

  83. G.H. Rosenblatt, M.W. Rowe, G.P. Williams Jr., R.T. Williams, Y. Chen, Phys. Rev. B. 39(14), 10309–10318 (1989)

    CAS  Google Scholar 

  84. P. Płóciennik, D. Guichaoua, A. Zawadzka, A. Korcala, J. Strzelecki, P. Trzaska, B. Sahraoui, Opt. Quant. Electron. 48, 277 (2016)

    Google Scholar 

  85. K. Bartkiewicz, Z. Łukasiak, A. Zawadzka, P. Płóciennik, A. Korcala, 13th International Conference on Transparent Optical Networks, Stockholm. 1–4 (2011)

  86. D. Varshney, S. Dwivedi, Superlattices Microstruct. 85, 886–893 (2015)

    CAS  Google Scholar 

  87. N.B. Manson, W. Von der Ohe, S.L. Chodos, Phys. Rev. B. 3(6), 1968–1972 (1971)

    Google Scholar 

  88. L. Borromeo, U. Zimmermann, S. Andò, G. Coletti, D. Bersani, D. Basso, P. Gentile, B. Schulze, E. Garzanti, J. Raman Spectrosc. 48(7), 983–992 (2017)

    CAS  Google Scholar 

  89. J. Sivasankari, S. Selvakumar, K. Sivaji, S. Sankar, J. Alloys Compd. 616, 51–57 (2014)

    CAS  Google Scholar 

  90. B.R. Ali, JMESS. 2(7), 610–612 (2016)

    Google Scholar 

  91. S. Thirumavalavan, K. Mani, S. Sagadevan, Mater. Res. 18(5), 1000–1007 (2015)

    CAS  Google Scholar 

  92. D.J. Kim, W.S. Choi, F. Schleicher, R.H. Shin, S. Boukari, V. Davesne, C. Kieber, J. Arabski, G. Schmerber, E. Beaurepaire, W. Jo, M. Bowen, Appl. Phys. Lett. 97, 263502 (2010)

    Google Scholar 

  93. T. Nakamura, K. Homma, K. Tachibana, Nanosc. Res. Lett. 8, 76 (2013)

    Google Scholar 

  94. S.N. Bajantri, R.D. Mathad, Int. J. Pure Appl. Phys. 13(2), 219–229 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Visweswaran.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Visweswaran, S., Venkatachalapathy, R., Haris, M. et al. Characterization of MgO thin film prepared by spray pyrolysis technique using perfume atomizer. J Mater Sci: Mater Electron 31, 14838–14850 (2020). https://doi.org/10.1007/s10854-020-04046-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04046-7

Navigation