Skip to main content

Advertisement

Log in

Hydrogen-rich c-Si interfacial modification to obtain efficient passivation for silicon heterojunction solar cell

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

How to passivate the heterojunction between the doped layer and the crystalline silicon (c-Si) base plays a crucial role for the silicon heterojunction (SHJ) solar cell to obtain high performance, especially high open-circuit voltage (VOC) and fill factor (FF). Here, a hydrogen-rich c-Si interfacial modification was realized by preparing an ultrathin (~ 1.5 nm) intrinsic hydrogenated amorphous silicon (a-Si:H) onto the c-Si(n) interface with pure silane via plasma enhanced chemical vapor deposition (PECVD), prior to the deposition of a ~ 8 nm relatively compact a-Si:H(i) layer for the a-Si:H(p)/c-Si(n) heterojunction. The enhanced effective minority carrier lifetime (τeff) of the c-Si base and VOC of the final solar cell indicated that such interfacial modification improved the heterojunction passivation efficiently by saturating the c-Si dangling bonds (DBs) via hydrogenation with the following deposition of the compact a-Si:H(i) layer that kept the c-Si interface out of direct contact with the doped layer. By altering the deposition pressure, the hydrogen content (CH) in the ultrathin a-Si:H was adjusted regularly to fabricate a series of SHJ solar cells with the area of 244.45 cm2. A maximal conversion efficiency up to 23.81% was achieved with VOC of 742.9 mV, JSC of 38.67 mA/cm2 and FF of 82.99% when the ultrathin a-Si:H had a relatively high CH of about 24–25%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K. Okuda, H. Okamoto, Y. Hamakawa, Jpn. J. Appl. Phys. 22, L605 (1983). https://doi.org/10.1143/jjap.22.l605

    Article  Google Scholar 

  2. D.P. Chen, L. Zhao, H.W. Diao, W.B. Zhang, G. Wang, W.J. Wang, J. Mater. Sci. 25, 2657 (2014). https://doi.org/10.1007/s10854-014-1925-z

    Article  CAS  Google Scholar 

  3. F. Gérenton, J. Eymard, S. Harrison, R. Clerc, D. Muñoz, Sol. Energy Mater. Sol. Cells 204, 110213 (2020). https://doi.org/10.1016/j.solmat.2019.110213

    Article  CAS  Google Scholar 

  4. D. Adachi, J.L. Hernandez, K. Yamamoto, Appl. Phys. Lett. (2015). https://doi.org/10.1063/1.4937224

    Article  Google Scholar 

  5. K. Yoshikawa, W. Yoshida, T. Irie et al., Sol. Energy Mater. Sol. Cells 173, 37 (2017). https://doi.org/10.1016/j.solmat.2017.06.024

    Article  CAS  Google Scholar 

  6. M. Taguchi, A. Terakawa, E. Maruyama, M. Tanaka, Prog. Photovolt. 13, 481 (2005). https://doi.org/10.1002/pip.646

    Article  CAS  Google Scholar 

  7. J.P. Kleider, C. Longeaud, P.R.I. Cabarrocas, J. Appl. Phys. 72, 4727 (1992). https://doi.org/10.1063/1.352079

    Article  CAS  Google Scholar 

  8. S. De Wolf, M. Kondo, Appl. Phys. Lett. (2007). https://doi.org/10.1063/1.2432297

    Article  Google Scholar 

  9. Z.P. Wu, L.P. Zhang, R.F. Chen et al., Appl. Surf. Sci. 475, 504 (2019). https://doi.org/10.1016/j.apsusc.2018.12.239

    Article  CAS  Google Scholar 

  10. H. Fujiwara, M. Kondo, Appl. Phys. Lett. (2007). https://doi.org/10.1063/1.2426900

    Article  Google Scholar 

  11. W.W. Guo, L.P. Zhang, F.Y. Meng et al., Physica Status Solidi 212, 2233 (2015). https://doi.org/10.1002/pssa.201532143

    Article  CAS  Google Scholar 

  12. H. Meddeb, T. Bearda, Y. Abdelraheem et al., J. Phys. D (2015). https://doi.org/10.1088/0022-3727/48/41/415301

    Article  Google Scholar 

  13. L.P. Zhang, W.Z. Liu, W.W. Guo et al., IEEE J. Photovolt. 6, 604 (2016). https://doi.org/10.1109/jphotov.2016.2528404

    Article  Google Scholar 

  14. D. Deligiannis, V. Marioleas, R. Vasudevan, C.C.G. Visser, R. van Swaaij, M. Zeman, J. Appl. Phys. (2016). https://doi.org/10.1063/1.4954069

    Article  Google Scholar 

  15. W.Z. Liu, L.P. Zhang, R.F. Chen et al., J. Appl. Phys. (2016). https://doi.org/10.1063/1.4966941

    Article  Google Scholar 

  16. Y.J. Jiang, X.D. Zhang, F.Y. Wang, C.C. Wei, Y. Zhao, RSC Adv. 4, 29794 (2014). https://doi.org/10.1039/c4ra03186e

    Article  CAS  Google Scholar 

  17. K.S. Lee, C.B. Yeon, S.J. Yun, K.H. Jung, J.W. Lim, ECS Solid State Lett. 3, P33 (2014). https://doi.org/10.1149/2.001404ssl

    Article  CAS  Google Scholar 

  18. Y. Zhang, C. Yu, M. Yang et al., Chin. Phys. Lett. 34, 38101 (2017). https://doi.org/10.1088/0256-307X/34/3/038101

    Article  Google Scholar 

  19. L. Zhao, G.H. Wang, H.W. Diao, W.J. Wang, J. Phys. D (2018). https://doi.org/10.1088/1361-6463/aa9ecd

    Article  Google Scholar 

  20. J. Tauc, R. Grigorovici, A. Vancu, Phys. Status Solidi (b) 15, 627 (1966). https://doi.org/10.1002/pssb.19660150224

    Article  CAS  Google Scholar 

  21. L.F. Yang, S.H. Zhong, W.B. Zhang et al., Prog. Photovolt. 26, 385 (2018). https://doi.org/10.1002/pip.3000

    Article  CAS  Google Scholar 

  22. M. Bivour, S. Schroer, M. Hermle, S.W. Glunz, Sol. Energy Mater. Sol. Cells 122, 120 (2014). https://doi.org/10.1016/j.solmat.2013.11.029

    Article  CAS  Google Scholar 

  23. D.V. Tsu, G. Lucovsky, B.N. Davidson, Phys. Rev. B 40, 1795 (1989). https://doi.org/10.1103/PhysRevB.40.1795

    Article  CAS  Google Scholar 

  24. J.D. Ouwens, R.E.I. Schropp, Phys. Rev. B 54, 17759 (1996). https://doi.org/10.1103/PhysRevB.54.17759

    Article  Google Scholar 

  25. A.A. Langford, M.L. Fleet, B.P. Nelson, W.A. Lanford, N. Maley, Phys. Rev. B 45, 13367 (1992). https://doi.org/10.1103/PhysRevB.45.13367

    Article  CAS  Google Scholar 

  26. W. Beyer, M.S.A. Ghazala, Absorption strengths of Si-H vibrational modes in hydrogenated silicon, in Amorphous and Microcrystalline Silicon Technology, ed. by R. Schropp, H.M. Branz, M. Hack, I. Shimizu, S. Wagner (Materials Research Society, Pittsburgh, 1998)

    Google Scholar 

  27. U. Kroll, J. Meier, A. Shah, S. Mikhailov, J. Weber, J. Appl. Phys. 80, 4971 (1996). https://doi.org/10.1063/1.363541

    Article  CAS  Google Scholar 

  28. T.F. Schulze, L. Korte, F. Ruske, B. Rech, Phys. Rev. B (2011). https://doi.org/10.1103/PhysRevB.83.165314

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the “Transformational Technologies for Clean Energy and Demonstration”, Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA21060500), the National Natural Science Foundation of China (Grant No. 61674151), and Beijing Municipal Science and Technology Project (Grant No. Z181100004718003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

You, J., Liu, H., Qu, M. et al. Hydrogen-rich c-Si interfacial modification to obtain efficient passivation for silicon heterojunction solar cell. J Mater Sci: Mater Electron 31, 14608–14613 (2020). https://doi.org/10.1007/s10854-020-04023-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04023-0

Navigation