Skip to main content
Log in

A comprehensive study on Cu2SnS3 prepared by sulfurization of Cu–Sn sputtered precursor for thin-film solar cell applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, a comprehensive study on the influences of the various synthesizing parameters of monoclinic Cu2SnS3 using the RF sputtering method, followed by the sulfurization process, is investigated. In particular, the impact of sputtering power and pressure on multi-material target Cu–Sn (compositional ratio Cu:Sn of 52:48%) was examined. All samples exhibited a monoclinic structure with similar split bandgaps around 0.9 eV. Increasing sputtering power showed direct effects on the sputtered Cu/Sn atoms ratio and the secondary phases obtained. The increase of sputtering pressure causes gas droplets and blistering on the film surfaces. The effects of changing the sulfurization temperature and the sulfur powder amount were also studied. The increase in the sulfurization temperature reduces the surface roughness, increases film crystallinity, and minimizes Cu-based secondary phases. The sulfur amount used during the sulfurization process showed a vital impact on film formation. Using a small amount of sulfur produced a partially sulfurized film that exhibited a poor performance solar cell. A power conversion efficiency of 1.94% is achieved with the optimized condition for the bare Cu2SnS3 without doping or heat treatment for the fabricated cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, Mohamed S. Abdel-Latif, upon reasonable request.

References

  1. Y. Hamakawa, Thin-Film Solid Cells (Springer, New York, 2004), pp. 1–14

    Google Scholar 

  2. D.J. Feldman, R.M. Margolis, Q4 2018/Q1 2019 Solar Industry Update (National Renewable Energy Lab.(NREL), Golden, CO (United States) (2019)

  3. M.A. Green, E.D. Dunlop, D.H. Levi, J. Hohl-Ebinger, M. Yoshita, A.W.Y. Ho‐Baillie, Prog. Photovoltaics Res. Appl. 27, 565 (2019)

    Google Scholar 

  4. T. Bayazıt, M.A. Olgar, T. Küçükömeroğlu, E. Bacaksız, M. Tomakin, J. Mater. Sci. Mater. Electron. 30, 12612 (2019)

    Google Scholar 

  5. S. Abdelhaleem, A.E. Hassanien, R. Ahmad, M. Schuster, A.H. Ashour, M. Distaso, W. Peukert, P.J. Wellmann, J. Electron. Mater. 47, 7085 (2018)

    CAS  Google Scholar 

  6. A.C. Lokhande, K.V. Gurav, E. Jo, M. He, C.D. Lokhande, J.H. Kim, Opt. Mater. (Amst). 54, 207 (2016)

    CAS  Google Scholar 

  7. G. Sunny, T. Thomas, D.R. Deepu, C.S. Kartha, K.P. Vijayakumar, Optik (Stuttg) 144, 263 (2017)

    CAS  Google Scholar 

  8. Q. Chen, Z. Jia, H. Yuan, W. Zhu, Y. Ni, X. Zhu, X. Dou, J. Mater. Sci. Mater. Electron. 30, 4519 (2019)

    CAS  Google Scholar 

  9. A. Nagoya, R. Asahi, R. Wahl, G. Kresse, Phys. Rev. B 81, 113202 (2010)

    Google Scholar 

  10. M.S.A. Latif, N.M. Shaalan, A. A. El-Moneim, Key Engineering Materials. Trans Tech Publ, pp. 62–66 (2018)

  11. J. Wu, C. Gao, L. Han, S. Shen, M. Jia, L. Wang, L. Jiang, F. Liu, J. Mater. Sci. Mater. Electron. 30, 4378 (2019)

    CAS  Google Scholar 

  12. R. Chierchia, F. Pigna, M. Valentini, C. Malerba, E. Salza, P. Mangiapane, T. Polichetti, A. Mittiga, Phys. Status Solidi 13, 35 (2016)

    CAS  Google Scholar 

  13. K. Tanaka, T. Maeda, H. Araki, Sol. Energy 199, 143 (2020)

    CAS  Google Scholar 

  14. Y. Kim, I.-H. Choi, S.Y. Park, Thin Solid Films 666, 61 (2018)

    CAS  Google Scholar 

  15. S.A. Zaki, M.I. Abd-Elrahman, A.A. Abu-Sehly, N.M. Shaalan, M.M. Hafiz, Mater. Sci. Semicond. Pro. 115, 105123 (2020)

    CAS  Google Scholar 

  16. N. Thota, M. Kumar, M. Vishwakarma, B.R. Mehta, Thin Solid Films 677, 62 (2019)

    CAS  Google Scholar 

  17. E.S. Hossain, P. Chelvanathan, S.A. Shahahmadi, B. Bais, M. Akhtaruzzaman, S.K. Tiong, K. Sopian, N. Amin, Sol. Energy 177, 262 (2019)

    CAS  Google Scholar 

  18. H.D. Shelke, A.C. Lokhande, J.H. Kim, C.D. Lokhande, J. Alloys Compd. 831, 154768 (2020)

    CAS  Google Scholar 

  19. K. Tanaka, M. Kowata, F. Yoshihisa, S. Imai, W. Yamazaki, Thin Solid Films 697, 137820 (2020)

    CAS  Google Scholar 

  20. M. Nakashima, J. Fujimoto, T. Yamaguchi, M. Izaki, Appl. Phys. Express 8, 42303 (2015)

    Google Scholar 

  21. D. Avellaneda, M.T.S. Nair, P.K. Nair, J. Electrochem. Soc. 157, D346 (2010)

    CAS  Google Scholar 

  22. E.S. Hossain, P. Chelvanathan, S.A. Shahahmadi, M.T. Ferdaous, B. Bais, S.K. Tiong, N. Amin, Chalcogenide Lett. 15, 499 (2018)

    CAS  Google Scholar 

  23. Y. Zhao, X. Han, B. Xu, C. Dong, J. Li, X. Yan, J. Mater. Sci. Mater. Electron. 30, 17947 (2019)

    CAS  Google Scholar 

  24. P.R. Guddeti, S. Gedi, K.T.R. Reddy, Mater. Sci. Semicond. Process. 86, 164 (2018)

    CAS  Google Scholar 

  25. Q. Zhang, H. Deng, J. Yu, B. Xu, J. Tao, P. Yang, L. Sun, J. Chu, Mater. Lett. 228, 447 (2018)

    CAS  Google Scholar 

  26. M.R. Pallavolu, C.-D. Kim, V.R.M. Reddy, S. Gedi, C. Park, Sol. Energy 188, 209 (2019)

    CAS  Google Scholar 

  27. H. Metin, R. Esen, J. Cryst. Growth 258, 141 (2003)

    CAS  Google Scholar 

  28. F.I. Ezema, Y. Kayama, I.C. Amaechi, T. Hiramatsu, A.C. Nwanya, R.U. Osuji, M. Malik, M. Sugiyama, Chalcogenide Lett. 11, (2014)

  29. K.-Y. Chan, B.-S. Teo, J. Mater. Sci. 40, 5971 (2005)

    CAS  Google Scholar 

  30. K. Suzuki, J. Chantana, T. Minemoto, Appl. Surf. Sci. 414, 140 (2017)

    CAS  Google Scholar 

  31. W. Wang, H. Shen, H. Yao, J. Li, J. Jiao, J. Mater. Sci. Mater. Electron. 26, 1449 (2015)

    CAS  Google Scholar 

  32. Y. Dong, J. He, X. Li, Y. Chen, L. Sun, P. Yang, J. Chu, J. Alloys Compd. 665, 69 (2016)

    CAS  Google Scholar 

  33. U. Chalapathi, B. Poornaprakash, S.-H. Park, Vacuum 131, 22 (2016)

    CAS  Google Scholar 

  34. J. De Wild, E. Kalesaki, L. Wirtz, P.J. Dale, Phys. Status Solidi (RRL)–Rapid Res. Lett. 11, 1600410 (2017)

    Google Scholar 

  35. I.G. Orletskii, M.N. Solovan, F. Pinna, G. Cicero, P.D. Mar’yanchuk, E.V. Maistruk, E. Tresso, Phys. Solid State 59, 801 (2017)

    CAS  Google Scholar 

  36. I.M. El Radaf, H.Y.S. Al-Zahrani, A.S. Hassanien, J. Mater. Sci. Electron. 31, 3228 (2020)

    Google Scholar 

  37. A.S. Hassanien, A.A. Akl, Superlattices Microstruct. 89, 153 (2016)

    CAS  Google Scholar 

  38. A.S. Hassanien, A.A. Akl, J. Alloys Compd. 648, 280 (2015)

    CAS  Google Scholar 

  39. A.S. Hassanien, I.M. El, Radaf, Phys. B Condens. Matter 585, 412110 (2020)

    CAS  Google Scholar 

  40. D.S. Arteev, A.V. Sakharov, E.E. Zavarin, W.V. Lundin, A.N. Smirnov, V.Y. Davydov, M.A. Yagovkina, S.O. Usov, A.F. Tsatsulnikov, J. Phys. Conf. Ser. 1135, 012050 (2018)

    Google Scholar 

  41. A.S. Hassanien, A.A. Akl, Phys. B Condens. Matter 576, 411718 (2020)

    CAS  Google Scholar 

  42. P.M. Kaminski, S. Yilmaz, A. Abbas, F. Bittau, J.W. Bowers, R.C. Greenhalgh, J.M. Walls, In: proceedings of the 2017 IEEE 44th Photovolt. Spec. Conf. (IEEE, 2017), pp. 3430–3434 (2017)

  43. P. Bras, J. Sterner, C. Platzer-Björkman, J. Vac. Sci. Technol. A Vac. Surf. Film 33, 61201 (2015)

    Google Scholar 

  44. M.I. Ojovan, K.P. Travis, R.J. Hand, J. Phys. Condens. Matter 19, 415107 (2007)

    Google Scholar 

  45. S. Shirakata, K. Ohkubo, Y. Ishii, T. Nakada, Sol. Energy Mater. Sol. Cells 93, 988 (2009)

    CAS  Google Scholar 

  46. J. Chantana, K. Tai, H. Hayashi, T. Nishimura, Y. Kawano, T. Minemoto, Sol. Energy Mater. Sol. Cells 206, 110261 (2020)

    CAS  Google Scholar 

  47. G.Y. Ashebir, C. Dong, J. Chen, W. Chen, R. Liu, Q. Zhao, Z. Wan, M. Wang, J. Phys. D. Appl. Phys. 53, 115101 (2020)

    CAS  Google Scholar 

  48. S. Sato, H. Sumi, G. Shi, M. Sugiyama, Phys. Status Solidi 12, 757 (2015)

    CAS  Google Scholar 

  49. M. He, A.C. Lokhande, I.Y. Kim, U.V. Ghorpade, M.P. Suryawanshi, J.H. Kim, J. Alloys Compd. 701, 901 (2017)

    CAS  Google Scholar 

  50. J.Y. Lee, I.Y. Kim, M.P. Surywanshi, U.V. Ghorpade, D.S. Lee, J.H. Kim, Sol. Energy 145, 27 (2017)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere gratitude to the Ministry of Higher Education (MOHE) – Egypt for their financial support and Tokyo University of Science - Noda Campus for offering the facilities and tools contribution.

Funding

This work was funded by the Ministry of Higher Education (MOHE) – Egypt and supported by the Tokyo University of Science - Noda Campus by offering the facilities and tools.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed S. Abdel-Latif.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdel-Latif, M.S., Magdy, W., Tosuke, T. et al. A comprehensive study on Cu2SnS3 prepared by sulfurization of Cu–Sn sputtered precursor for thin-film solar cell applications. J Mater Sci: Mater Electron 31, 14577–14590 (2020). https://doi.org/10.1007/s10854-020-04018-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04018-x

Navigation