Skip to main content
Log in

Photoluminescence and comparative thermoluminescence studies of UV/γ-irradiated Dy3+ doped bismuth silicate phosphor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A series of Bi4Si3O12:Dy3+ phosphor have been synthesized via conventional solid-state reaction method and its luminescence properties were investigated as near cool white light emitting and long afterglow phosphor. Crystal structure and phase structure characterization is determined using X-ray diffraction (XRD), SEM and EDS. Rietveld structural refinement and XRD confirms that prepared sample exhibit pure cubic structure [space group I-43d]. Photoluminescence spectra of both doped and undoped Bi4Si3O12 phosphor were efficiently excited in the range of 200-450 nm, and prepared phosphor under 272 nm excitation exhibit three emission peaks located at 463 nm(blue), 482 nm(blue) and 576 nm (yellow) corresponding to 3P1 → 1S0, 4F9/2 → 6H15/2 and 4F9/2 → 6H13/2 transitions. Characteristic emission peaks of Dy3+ centered at 482 nm and 576 nm were assigned for white light emission. The calculated Commission Internationale de I’Eclairage (CIE) chromaticity confirms that with Dy3+ doping, the luminescence co-ordinates of Bi4Si3O12 phosphor shift to near white(x = 0.316, y = 0.358) region which is close to commercial pc-LED (Blue LED + YAG:Ce3+) (x = 0.320, y = 0.320) co-ordinates. Computation of correlated color temperature 6184 K endorses that prepared phosphor is cool in nature and can be served as white light emitting phosphor. Comparative thermoluminescence study of UV and γ-irradiated Bi4Si3O12:Dy3+ phosphor is performed for the dosimetry application. TL intensity is recorded maximum at 30 min under UV irradiation (256 nm), and for γ irradiation, it was recorded at 10 kGy dose rate. γ-irradiated Bi4Si3O12:Dy3+ phosphor TL study is reported for the first time at different dose rate and concentration for high dosimetry application. The defect characteristic is examined, Trap depths and other kinetic parameters are also evaluated by Chen’s peak shape method. Decay and fading measurement under UV/γ irradiation are performed to examine the long after glow properties of prepared samples. TL emission spectrum studies are also performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. G. Tiwari, N. Brahme, R. Sharma, D.P. Bisen, S.K. Sao, S.J. Dhoble, A study on the luminescence properties of gamma-ray-irradiated white light emitting Ca2Al2SiO7:Dy3+ phosphors fabricated using a combustion-assisted method. RSC Adv. (2016). https://doi.org/10.1039/c6ra04913c

    Article  Google Scholar 

  2. S. Sharma, N. Brahme, D.P. Bisen, P. Dewangan, Cool white light emission from Dy 3+ activated alkaline alumino silicate phosphors. Opt. Express (2018). https://doi.org/10.1364/oe.26.029495

    Article  Google Scholar 

  3. Y. Zhang, J. Xu, Q. Cui, B. Yang, Eu3+ -doped Bi4 Si3 O12 red phosphor for solid state lighting: microwave synthesis, characterization, photoluminescence properties and thermal quenching mechanisms. Sci. Rep. (2017). https://doi.org/10.1038/srep42464

    Article  Google Scholar 

  4. M.L. Wang, J.Y. Xu, Y. Zhang, Y.Q. Chu, B.B. Yang, H. Shen, T. Tian, Growth and thermo-luminescence properties. Wuji Cailiao Xuebao (2016). https://doi.org/10.15541/jim20160221

    Article  Google Scholar 

  5. B. Yang, J. Xu, Y. Zhang, H. Zeng, T. Tian, Y. Chu, Y. Pan, Q. Cui, Improvement and luminescent mechanism of Bi4Si3O12 scintillation crystals by Dy3+ doping. Nucl. Instrum. Methods Phys. Res. Sect. A. (2016). https://doi.org/10.1016/j.nima.2015.10.033

    Article  Google Scholar 

  6. B. Yang, J. Xu, Y. Zhang, Y. Chu, M. Wang, Y. Wen, A yellow emitting phosphor Dy:Bi4Si3O12 crystal for LED application. Mater. Lett. (2014). https://doi.org/10.1016/j.matlet.2014.07.167

    Article  Google Scholar 

  7. T. Tian, H. Feng, Y. Zhang, D. Zhou, H. Shen, H. Wang, J. Xu, Crystal growth and luminescence properties of Dy3+ and Ge4+ Co-doped Bi4Si3O12 single crystals for high power warm white LED. Crystals (2017). https://doi.org/10.3390/cryst7080249

    Article  Google Scholar 

  8. I. Bureau, Description Title of Invention : LUMINESCENT BISMUTH SILICATES, USE, 2016.

  9. A.R. Kadam, R.S. Yadav, G.C. Mishra, S.J. Dhoble, Effect of singly, doubly and triply ionized ions on downconversion photoluminescence in Eu3+ doped Na2Sr2Al2PO4Cl9 phosphor: a comparative study. Ceram. Int. 46, 3264–3274 (2020). https://doi.org/10.1016/j.ceramint.2019.10.032

    Article  CAS  Google Scholar 

  10. B.H. Toby, R factors in RIETVELD analysis: how good is good enough? Powder Diffr. 21, 67–70 (2006). https://doi.org/10.1154/1.2179804

    Article  CAS  Google Scholar 

  11. Q. Wei, G. Liu, Z. Zhou, H. Yang, J. Zhuang, Q. Liu, Luminescence behaviors of a novel white-emitting phosphor Bi 4Si3O12: Dy prepared via sol-gel route. J. Lumin. 145, 803–807 (2014). https://doi.org/10.1016/j.jlumin.2013.08.069

    Article  CAS  Google Scholar 

  12. B. Yang, J. Xu, J. Zou, Y. Zhang, T. Tian, Y. Chu, M. Wang, Bridgman growth, luminescence and energy transfer studies of Tm3+ or/and Dy3+ co-doped Bi4Si3O12 crystal phosphor. J. Ceram. Process. Res. 17, 537–542 (2016)

    Google Scholar 

  13. Y. Shen, K. Qiu, J. Wang, W. Zhang, Q. Tang, Synthesis of Dy3+ co-doped Bi4Si3O12:Sm3+ phosphors with enhanced red-emitting properties. Ceram. Int. (2017). https://doi.org/10.1016/j.ceramint.2017.08.174

    Article  Google Scholar 

  14. F.Y. Zhang, J.J. Xie, T. Wang, D.B. Lin, W.Q. Xiao, Y. Shi, F. Lei, L. Zhang, Synthesis and luminescence properties of Bi4Si3O12:Sm3+ phosphor. Rengong Jingti Xuebao/Journal of Synthetic Crystals. 43, 15946–15951 (2017)

    Google Scholar 

  15. P. Dewangan, D.P. Bisen, N. Brahme, S. Sharma, Structural characterization and luminescence properties of Dy3+ doped Ca3MgSi2O8 phosphors. J. Alloy. Compd. (2019). https://doi.org/10.1016/j.jallcom.2018.10.390

    Article  Google Scholar 

  16. Y. Guo, B.K. Moon, B.C. Choi, J.H. Jeong, J.H. Kim, Multi-wavelength excited white-emitting K2Gd(1–x)(PO4)(WO4): X Dy3+ phosphors with satisfactory thermal properties for UV-LEDs. RSC Adv. 7, 23083–23092 (2017). https://doi.org/10.1039/c7ra02242e

    Article  CAS  Google Scholar 

  17. C.Y. Tsai, J.W. Lin, Y.P. Huang, Y.C. Huang, Modeling and assessment of long afterglow decay curves. Sci. World J. (2014). https://doi.org/10.1155/2014/102524

    Article  Google Scholar 

  18. S.K. Sao, N. Brahme, D.P. Bisen, G. Tiwari, S.J. Dhoble, Mechanoluminescence, thermoluminescence and photoluminescence studies of UV/γ-irradiated Ba2MgSi2O7:Dy 3+ phosphors. J. Lumin. (2016). https://doi.org/10.1016/j.jlumin.2016.08.052

    Article  Google Scholar 

  19. G. Tiwari, N. Brahme, R. Sharma, D.P. Bisen, S.K. Sao, S. Tigga, Luminescence properties of dysprosium doped di-calcium di-aluminium silicate phosphors. Opt. Mater. (2016). https://doi.org/10.1016/j.optmat.2016.05.033

    Article  Google Scholar 

  20. B.S. Prathibha, M.S. Chandrashekara, H. Nagabhushana, K.P. Ramesh, B.M. Naghabhushana, Thermoluminescence Studies on Sr2SiO4 nano powder. Procedia Mater. Sci. 5, 944–952 (2014). https://doi.org/10.1016/j.mspro.2014.07.382

    Article  CAS  Google Scholar 

  21. P. Dewangan, D.P. Bisen, N. Brahme, R.K. Tamrakar, K. Upadhyay, S. Sharma, I.P. Sahu, Studies on thermoluminescence properties of alkaline earth silicate phosphors. J. Alloy. Compd. 735, 1383–1388 (2018). https://doi.org/10.1016/j.jallcom.2017.11.293

    Article  CAS  Google Scholar 

  22. M. Yüksel, T. Dogan, S. Balci-Yegen, S. Akca, Z.G. Portakal, N. Kucuk, M. Topaksu, Heating rate properties and kinetic parameters of thermoluminescence glow curves of La-doped zinc borate. Radiat. Phys. Chem. 151, 149–155 (2018). https://doi.org/10.1016/j.radphyschem.2018.06.020

    Article  CAS  Google Scholar 

  23. A. Deshpande, N.S. Dhoble, S.C. Gedam, S.J. Dhoble, Photo and thermoluminescence in K2Mg(SO4)2: Dy phosphor and evaluation of trapping parameters. J. Lumin. (2016). https://doi.org/10.1016/j.jlumin.2016.08.003

    Article  Google Scholar 

  24. C. Ye, Ca2MgSi2O7:Ce3+/Tb3+/Eu3+ phosphors: Multicolor tunable luminescence via Ce3+ → Tb3+, Tb3+ → Eu3+ and Ce3+ → Tb3+ → Eu3+ energy transfers. J. Lumin. 213, 75–81 (2019). https://doi.org/10.1016/j.jlumin.2019.05.004

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author is very grateful to CSIR for CSIR-SRF fellowship, NIT Raipur for the SEM and EDS studies and Department of Physics, R.T.M University, Nagpur for Gamma radiation studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekta Chandrawanshi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandrawanshi, E., Bisen, D.P., Brahme, N. et al. Photoluminescence and comparative thermoluminescence studies of UV/γ-irradiated Dy3+ doped bismuth silicate phosphor. J Mater Sci: Mater Electron 31, 14454–14465 (2020). https://doi.org/10.1007/s10854-020-04005-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04005-2

Navigation