Skip to main content
Log in

The effect of different substrate-inclined angles on the characteristic properties of ZnO nanorods for UV photodetectors applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The effect of six different substrate-inclined angle with the vessel on the characteristics properties of the Zinc Oxide (ZnO) nanorods was explored and reported. The vertically well-aligned ZnO Nanorods (NRs) were synthesized on glass substrates by using the low-cost chemical bath deposition (CBD) method at 90 °C. The RF magnetron sputtering has been employed to deposit the ZnO nanoseed layer on glass substrates and electrodes for UV photodetectors (PDs) devices. The morphological, structural, and optical properties of the synthesized ZnO NRs have been investigated using various characterization techniques for different substrate- inclined angles. Also, the high-quality UV photodetector-based ZnO NRs have been fabricated for the optimum substrate-inclined angle of 70° with the vessel by applying a different bias voltage. The results found that variation of substrate-inclined angles have the remarkable and significant effect on the shape, size, length, alignment, density distribution, structure, lattice parameters, crystalline size, energy band gap (Eg), and optical properties of ZnO NRs. The average diameters and length of grown ZnO NRs were in the range of (58–249) nm and (303–2518) nm, respectively. The high aspect ratio, length, and growth rate were observed for ZnO nanorods grown at 70° substrate-inclined angle. The preferred orientation of ZnO NRs was along (002) hexagonal wurtzite plane and the intensity of (002) diffraction peak for ZnO NRs was increased with increasing substrate-inclined angles. The average crystalline size was in range of (46.7–58.8) nm. The average transmittance of ZnO NRs showed a reduction in the range of (44.5–3.3)% as the substrate angle increased. The optical studies show that the synthesized ZnO NRs have the direct Eg in the range of (3.16–3.254) eV. The fabricated UV PD-based ZnO NRs showed high performance and quality. The different bias voltage study shows that the ZnO nanorod UV PD has higher stability and repeatability at 5 V bias voltage. The PDs device exhibited the responsivity value of 3.49903 A/W to 390 nm light wavelength at 5 V, which is higher than those reported for UV PDs-based ZnO NRs. At 5 V bias voltages, the fabricated UV PDs showed a faster response and recovery times of 0.3402 S and 0.1639 S, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

source wavelength at fixed 5 V bias voltage & under 0.57 mW/cm2 UV light illumination of ZnO nanorods

Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. S. Liu, B. Li, H. Kan, M.Y. Li, B. Xie, S. Jiang, X. Zhu, J. Mater. Sci. 28, 15891–15898 (2017)

    CAS  Google Scholar 

  2. A.M. Bazargan, F. Sharif, S. Mazinani, N. Naderi, J. Mater. Sci. 27, 8221 (2016)

    CAS  Google Scholar 

  3. D.I. Son, B.W. Kwon, D.H. Park, W.S. Seo, Y. Yi, B. Angadi, C.L. Lee, W.K. Choi, Nat. Nanotechnol. 7, 465 (2012)

    CAS  Google Scholar 

  4. Y. Luo, B. Yin, H. Zhang, Y. Qiu, J. Lei, Y. Chang, Y. Zhao, J. Ji, L. Hu, J. Mater. Sci. 27, 2342–2348 (2016)

    CAS  Google Scholar 

  5. B.K. Sonawane, V. Shelke, M.P. Bhole, D.S. Patil, J. Phys. Chem. Solids 72, 1442–1446 (2011)

    CAS  Google Scholar 

  6. A.F. Abdulrahman, S.M. Ahmed, N.M. Ahmed, M.A. Almessiere, Dig. J. Nan. Biostruct. 11(4), 1073–1082 (2016)

    Google Scholar 

  7. V.R. Shinde, C.D. Lokhande, R.S. Mane, S.-H. Han, Appl. Surf. Sci. 245, 407–413 (2005)

    CAS  Google Scholar 

  8. O. Lupan, L. Chow, G. Chai, B. Roldan, A. Naitabdi, A. Schulte, H. Heinrich, Mater. Sci. Eng. B 145, 57–66 (2007)

    CAS  Google Scholar 

  9. F. Cao, X. Ji, J. Mater. Sci. Issue 3/2020.

  10. O. Yalcin, “Nanorods”, InTech Janeza Trdine 9, 51000 Rijeka, Croatia (2012).

  11. T.A. Hatton, (American Chemical Society, Washington, DC, 2008).

  12. E. Roduner, Size matters: why nanomaterials are different. Chem. Soc. Rev. 35, 583 (2006)

    CAS  Google Scholar 

  13. A.F. Abdulrahman, S.M. Ahmed, M.A. Almessiere, Dig. J. Nan. Biostruct. 12(4), 1001–1009 (2017)

    Google Scholar 

  14. D. Montenegro et al., J. Appl. Phys. 113, 143513–143519 (2013)

    Google Scholar 

  15. J.H. Choi, H. Tabata, T. Kawai, J. Cryst. Growth 226(4), 493–500 (2001)

    CAS  Google Scholar 

  16. P. Yang et al., Adv. Funct. Mater. 12, 323 (2002)

    CAS  Google Scholar 

  17. J.Y. Lee et al., Thin Solid Films 403, 553 (2002)

    Google Scholar 

  18. R. Shabannia, H. Abu-Hassan, Mater. Lett. 90, 156–158 (2013)

    CAS  Google Scholar 

  19. Y. Ryu, T.S. Lee, J.A. Lubguban, H.W. White, B.J. Kim, Y.S. Park, C.J. Youn, Appl. Phys. Lett. 88, 241108 (2006)

    Google Scholar 

  20. A. Fattah, S.M. Ahmed, N.M. Ahmed, Sci. J. Univ. Zakho 6(4), 160–165 (2018)

    Google Scholar 

  21. R.C. Wang, H.Y. Lin, S.J. Chen, Y.F. Lai, M.R.S. Huang, Appl. Phys. A Mater. Sci. Process. 96, 775–781 (2009)

    CAS  Google Scholar 

  22. Q. Tao, S. Li, Q.Y. Zhang, D.W. Kang, J.S. Yang, W.W. Qiu, K. Liu, Mater. Res. Bull. 54, 6–12 (2014)

    CAS  Google Scholar 

  23. A.F. Abdulrahman, S.M. Ahmed, N.M. Ahmed, Sci. J. Univ Zakho 5(1), 128–135 (2017)

    Google Scholar 

  24. S. George, G. Katerina, S.N. Yannopoulos, Cryst. Growth Des. 16(4), 2140–2150 (2016)

    Google Scholar 

  25. P.K. Nair, M.T.S. Nair, A. Fernandez, M. Ocampo, Prospects of chemically deposited metal chalcogenide thin films for solar control applications. J. Phys. D 22, 829 (1989)

    CAS  Google Scholar 

  26. L.L. Yang, Q.X. Zhao, M. Willander, J. Alloys Compd. 469, 623–629 (2009)

    CAS  Google Scholar 

  27. A. Echresh, M.Z. Shoushtari, M. Farbod, Mater. Lett. 110, 164–167 (2013)

    CAS  Google Scholar 

  28. P.L. Limnonthakul, D. Yangnoi, P. Bintachitt, M. Hengwattana, M. HorprathumJ, Math. Fundam. Sci. 48, 48–54 (2016)

    CAS  Google Scholar 

  29. A.F. Abdulrahman, S.M. Ahmed, N.M. Ahmed, M.A. Almessiere, Dig. J. Nan. Biostruct. 11(3), 1007–1016 (2016)

    Google Scholar 

  30. M. Law, L.E. Greene, J.C. Johnson, R. Saykally, P. Yang, Nat. Mater. 4, 455–459 (2005)

    CAS  Google Scholar 

  31. J. Elias, R. Tena-Zaera, C. Lévy-Clément, Thin Solid Films 515, 8553–8557 (2007)

    CAS  Google Scholar 

  32. F. Tong, K. Kim, Y. Wang, R. Thapa, Y. Sharma, A. Modic, A. Claude Ahyi, T. Issacs-Smith, J. Williams, H. Ahn, H. Park, D.-J. Kim, S. Lee, E. Lim, K.K. Lee, M. Park, ISRN Nanomater. 2012, 1–7 (2012)

    Google Scholar 

  33. Y.-M. Lee, H.-W. Yang, J. Solid State Chem. 184, 615–623 (2011)

    CAS  Google Scholar 

  34. N. Nagayasamy, S. Gandhimathination, V. Veerasamy, Open J. Met. 3, 8–11 (2013)

    Google Scholar 

  35. P.S. Shewale, Y.S. Yu, J. Alloys Compd. 654, 79–86 (2016)

    CAS  Google Scholar 

  36. C. Chandrinou, N. Boukos, K. Giannakopoulos, A. Lusson, A. Travlos, Superlattices Microstruct. 42, 431–437 (2007)

    CAS  Google Scholar 

  37. J. Lv, J. Zhu, K. Huang, F. Meng, X. Song, Z. Sun, Appl. Surf. Sci. 257, 7534–7538 (2011)

    CAS  Google Scholar 

  38. S. Liang, X. Bi, J. Appl. Phys. 104, 1–6 (2008)

    Google Scholar 

  39. P. Singh, A. Kumar, D. Kaur, J. Cryst. Growth. 306, 303–310 (2007)

    CAS  Google Scholar 

  40. T. Lee, H. Ryu, W.-J. Lee, J. Alloys Compd. 597, 85–90 (2014)

    CAS  Google Scholar 

  41. L. Zhang, Y. Ruan, Y. Liu, Y. Zhai, Cryst. Res. Technol. 48, 996–1002 (2013)

    CAS  Google Scholar 

  42. S. Zhang, C. Yan, H. Zhang, G. Lu, Mater. Lett. 148, 1–4 (2015)

    CAS  Google Scholar 

  43. M. Poornajar, P. Marashi, D.H. Fatmehsari, M.K. Esfahani, Ceram. Int. 42, 173–184 (2016)

    CAS  Google Scholar 

  44. A.F. Abdulrahman, S.M. Ahmed, N.M. Ahmed, M.A. Almessiere, AIP Conf. Proc. 1875, 020004 (2017)

    Google Scholar 

  45. B.K. Sonawane, M.P. Bhole, D.S. Patil, Phys. B 405, 1603–1607 (2010)

    CAS  Google Scholar 

  46. M. Gusatti, C.E.M. Campos, D.A.R. Souza, V.M. Moser, N.C. Kuhnen, H.G. Riella, J. Nanosci. Nanotechnol. 13, 8307–8314 (2013)

    CAS  Google Scholar 

  47. S.H. Mohamed, A.M. Abd El-Rahman, A.M. Salem, L. Pichon, F.M. El-Hossary, J. Phys. Chem. Solids. 67, 2351–2357 (2006)

    CAS  Google Scholar 

  48. C.C. Ting, C.H. Li, C.Y. Kuo, C.C. Hsu, H.C. Wang, M.H. Yang, Thin Solid Films 518, 4156–4162 (2010)

    CAS  Google Scholar 

  49. C.K. Kasar, U.S. Sonawane, J.P. Bange, D.S. Patil, J. Mater. Sci. 27, 8126–8130 (2016)

    CAS  Google Scholar 

  50. A. Akhiruddin, S. Sugianto, I. Irmansyah, J. Mater. Phys. Chem. 2, 34–37 (2015)

    Google Scholar 

  51. M.F. Malek, M.H. Mamat, T. Soga, S.A. Rahman, S. Abu Bakar, A.S. Ismail, R. Mohamed, S.A.H. Alrokayan, H.A. Khan, M.R. Mahmood, Jpn. J. Appl. Phys. 55, 01AE15 (2016)

    Google Scholar 

  52. J.H. Lee, I.C. Leu, M.H. Hon, J. Cryst. Growth. 275, 2069–2075 (2005)

    Google Scholar 

  53. R.N. Gayen, R. Bhar, A.K. Pal, Indian J. Pure Appl. Phys. 48, 385–393 (2010)

    CAS  Google Scholar 

  54. A.K. Qasim, L.A. Jamil, A.F. Abdulrahman, Dig. J. Nan. Biostruct. 15(1), 157–165 (2020)

    Google Scholar 

  55. L. Roza, M.Y.A. Rahman, A.A. Umar, M.M. Salleh, J. Alloys Compd. 618, 153–158 (2015)

    CAS  Google Scholar 

  56. J. Kühnle, R.B. Bergmann, J.H. Werner, J. Cryst. Growth. 173, 62–68 (1997)

    Google Scholar 

  57. C.-Y. Tsay, K.-S. Fan, S.-H. Chen, C.-H. Tsai, J. Alloys Compd. 495, 126–130 (2010)

    CAS  Google Scholar 

  58. K.L. Foo, U. Hashim, K. Muhammad, C.H. Voon, Nanoscale Res. Lett. 9, 1–10 (2014)

    CAS  Google Scholar 

  59. Y.-J. Yoon, K.-S. Park, J.-H. Heo, J.-G. Park, S. Nahm, K.J. Choi, J. Mater. Chem. 20, 2386 (2010)

    CAS  Google Scholar 

  60. L.E. Greene, M. Law, J. Goldberger, F. Kim, J.C. Johnson, Y. Zhang, R.J. Saykally, P. Yang, Angew. Chem. Int. Ed. 42, 3031–3034 (2003)

    CAS  Google Scholar 

  61. A.M. Selman et al., Appl. Surf. Sci. 305, 445 (2014)

    CAS  Google Scholar 

  62. J. Chrzanowski, Y. Kravtsov, B. Bieg, Zeszyty Naukowe 38(110), 27 (2014)

    CAS  Google Scholar 

  63. S. Ju et al., Nanotechnology. 18, 155201 (2007)

    Google Scholar 

  64. A. Borodin, M. Reichling, Phys. Chem. Chem. Phys. 13, 15442 (2011)

    CAS  Google Scholar 

  65. X. Gu, M. Zhang, F. Meng, X. Zhang, Y. Chen, S. Ruan, Appl. Surf. Sci. 307, 20–23 (2014)

    CAS  Google Scholar 

  66. C. Soci et al., Nano Lett. 7, 1003–1009 (2007)

    CAS  Google Scholar 

  67. A.M. Selman, Z. Hassan, M. Husham, N.M. Ahmed, Appl. Surf. Sci. 305, 445–452 (2014)

    CAS  Google Scholar 

  68. C. Lan, C. Li, Y. Yin, H. Guo, S. Wang, J. Mater. Chem. C. 3, 8074–8079 (2015)

    CAS  Google Scholar 

  69. O. Lupan, L. Chow, G. Chai, Sens. Actuator B 141, 511–517 (2009)

    CAS  Google Scholar 

  70. A.K. Yasutaka Takahashi, Jpn. J. Appl. Phys. 33, 6611–6615 (1994)

    Google Scholar 

  71. G.M. Ali, P. Chakrabarti, J. Phys. D. Appl. Phys. 43, 415103 (2010)

    Google Scholar 

  72. X. Kong, X. Sun, X. Li, Y. Li, Mater. Chem. Phys. 82, 997–1001 (2003)

    CAS  Google Scholar 

  73. A.G. Ardakani, M. Pazoki, S.M. Mahdavi, A.R. Bahrampour, N. Taghavinia, Appl. Surf. Sci. 258, 5405–5411 (2012)

    Google Scholar 

  74. N. Naderi, M.R. Hashim, J. Alloys Compd. 552, 356–362 (2013)

    CAS  Google Scholar 

  75. X. Kong, C. Liu, W. Dong, X. Zhang, C. Tao, L. Shen, J. Zhou, Y. Fei, S. Ruan, Appl. Phys. Lett. 94, 2007–2010 (2009)

    Google Scholar 

  76. N.K. Hassan, M.R. Hashim, N.K. Allam, Sens. Actuators A. 192, 124–129 (2013)

    CAS  Google Scholar 

  77. R. Shabannia, H. AbuHassan, H. Mahmodi, N. Naderi, H.R. Abd, Semicond. Sci. Technol. 28, 115007 (2013)

    Google Scholar 

  78. S. Xu, Z.L. Wang, Nano Res. 4, 1013–1098 (2011)

    CAS  Google Scholar 

  79. R. Shabannia, H.A. Hassan, Electron. Mater. Lett. 10, 837–843 (2014)

    CAS  Google Scholar 

  80. H. Endo et al., Appl. Phys. Lett. 90, 88–91 (2007)

    Google Scholar 

  81. B. Yuan, X.J. Zheng, Y.Q. Chen, B. Yang, T. Zhang, Solid. State. Electron. 55, 49–53 (2011)

    CAS  Google Scholar 

  82. M. Rajabi, R.S. Dariani, A. IrajiZad, Sens. Actuators A 180, 11–14 (2012)

    CAS  Google Scholar 

  83. S.P. Chang, C.Y. Lu, S.J. Chang, Y.Z. Chiou, T.J. Hsueh, C.L. Hsu, IEEE J. Sel. Top. Quantum Electron. 17, 990–995 (2011)

    CAS  Google Scholar 

  84. F. Yi, Q. Liao, X. Yan, Z. Bai, Z. Wang, X. Chen, Q. Zhang, Y. Huang, Y. Zhang, Physica E 61, 180–184 (2014)

    CAS  Google Scholar 

  85. J.S. Jie, W.J. Zhang, Y. Jiang, X.M. Meng, Y.Q. Li, S.T. Lee, Nano Lett. 6, 1887–1892 (2006)

    CAS  Google Scholar 

  86. R. Calarco, M. Marso, T. Richter, A.I. Aykanat, R. Meijers, A.V.D. Hart, T. Stoica, H. Lüth, Nano Lett. 5, 981–984 (2005)

    CAS  Google Scholar 

  87. S.H. Lee, S.H. Kim, J.S. Yu, Nanoscale Res. Lett. 11, 333 (2016)

    Google Scholar 

  88. C. Rodwihok, S. Choopun, P. Ruankham, A. Gardchareon, S. Phadungdhitidhada, D. Wongratanaphisan, Appl. Surf. Sci. (2017)

  89. F.H. Alsultany, Z. Hassan, N.M. Ahmed, Opt. Mater. 60, 30–37 (2016)

    CAS  Google Scholar 

  90. Y. Yamanaka, T. Numai, K. Kasahara, K. Kuboto, Appl. Phys. Lett. 63, 1020–1022 (1993)

    CAS  Google Scholar 

Download references

Acknowledgements

The author wishes to gratefully thank the University of Zakho, Kurdistan Region-Iraq for their support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Fattah Abdulrahman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdulrahman, A.F. The effect of different substrate-inclined angles on the characteristic properties of ZnO nanorods for UV photodetectors applications. J Mater Sci: Mater Electron 31, 14357–14374 (2020). https://doi.org/10.1007/s10854-020-03995-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03995-3

Navigation