Skip to main content
Log in

Vibrational modes in (TlGaS2)x‒(TlGaSe2)1−x mixed crystals by Raman measurements: compositional dependence of the mode frequencies and line-shapes

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

TlGaS2 and TlGaSe2 ternary semiconducting compounds have been of scientific interest due to their large ultrafast optical nonlinearity characteristics. These remarkable properties make them promising semiconducting materials in photonic applications. A series of (TlGaS2)x‒(TlGaSe2)1−x layered mixed crystals grown by Bridgman method were investigated from the standpoint of their Raman spectroscopy characteristics. Experimental Raman scattering study of crystals were reported in the frequency range of 80–400 cm−1 for compositions of x = 0, 0.25, 0.50, 0.75 and 1.0. The effects of crystal disorder on the line-width broadening of Raman-active modes were studied in detail. The asymmetry in the Raman line-shape was analyzed for two highest-frequency intralayer mode presenting two-mode behavior. It was shown that mixed crystal disorder effect is the major source for change of Raman line-shape with composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. H. Zhan, D. Guo, G. Xie, Two-dimensional layered materials: from mechanical and coupling properties towards applications in electronics. Nanoscale 11, 13181 (2019)

    Article  CAS  Google Scholar 

  2. S. Yang, M. Wu, H. Wang, H. Cai, L. Huang, C. Jiang, S. Tongay, Ultrathin ternary semiconductor TlGaSe2 phototransistors with broad-spectral response. 2D Mater. 4, 035021 (2017)

    Article  Google Scholar 

  3. C.K. Sumesh, Temperature dependant electronic charge transport characteristics at MX2 (M = Mo, W; X = S, Se)/Si heterojunction devices. J. Mater. Sci. Mater. Electron. 30, 4117 (2019)

    Article  CAS  Google Scholar 

  4. X. Cao, A. Halder, Y. Tang, C. Hou, H. Wang, J.Q. Chi, Engineering two-dimensional layered nanomaterials for wearable biomedical sensors and power devices. Mater. Chem. Front. 2, 1944 (2018)

    Article  CAS  Google Scholar 

  5. L. Nemerenco, N.N. Syrbu, V. Dorogan, N.P. Bejan, V.V. Zalamai, Optical spectra of TlGaS2 crystals. J. Lumin. 172, 111 (2016)

    Article  CAS  Google Scholar 

  6. I.G. Stamov, N.N. Syrbu, V.V. Ursaki, V.V. Zalamai, Birefringence and excitonic spectra of TlGaS2 crystals. Opt. Commun. 298, 145 (2013)

    Article  Google Scholar 

  7. M. Isik, N.M. Gasanly, R. Turan, Spectroscopic ellipsometry study of above-band gap optical constants of layered structured TlGaSe2, TlGaS2 and TlInS2 single crystals. Phys. B 407, 4193 (2012)

    Article  CAS  Google Scholar 

  8. A. Cengiz, Y.M. Chumakov, M. Erdem, Y. Sale, F.A. Mikailzade, M.Y. Seyidov, Origin of the optical absorption of TlGaSe2 layered semiconductor in the visible range. Semicond. Sci. Technol. 33, 075019 (2018)

    Article  Google Scholar 

  9. Y. Shim, Y. Itoh, K. Wakita, N. Mamedov, Anisotropic optical constants and inter-band optical transitions in layered semiconductor TlGaSe2. Appl. Surf. Sci. 421, 788 (2017)

    Article  CAS  Google Scholar 

  10. N.M. Gasanly, Coexistence of indirect and direct optical transitions, refractive indices, and oscillator parameters in TlGaS2, TlGaSe2, and TlInS2 layered single crystals. J. Korean Phys. Soc. 57, 164 (2010)

    Article  CAS  Google Scholar 

  11. X.F. Xin, F. Liu, X.Q. Yan, W.W. Hui, X. Zhao, X.G. Gao, Z.B. Liu, J.G. Tian, Two-photon absorption and non-resonant electronic nonlinearities of layered semiconductor TIGaS2. Opt. Express 26, 33895 (2018)

    Article  CAS  Google Scholar 

  12. M.Y. Seyidov, R.A. Suleymanov, E. Balaban, Y. Sale, Enhancing the photoresponse of a TlGaSe2 semiconductor for ultraviolet detection applications. Phys. Scripta 90, 015805 (2015)

    Article  Google Scholar 

  13. N.S. Yuksek, N.M. Gasanly, A. Aydinli, H. Ozkan, M. Acikgoz, Infrared photoluminescence from TlGaS2 layered single crystals. Cryst. Res. Technol. 39, 800 (2004)

    Article  CAS  Google Scholar 

  14. N. Gasanly, Optical properties of TlGa(SxSe1−x)2 layered mixed crystals (0 ≤ x ≤ 1): absorption edge and photoluminescence study at T = 10 K. Pramana J. Phys. 91, 30 (2018)

    Article  Google Scholar 

  15. N.M. Gasanly, Tuning optical absorption edge by composition and temperature in TlGaS2xSe2(1−x) layered mixed crystals (0 ≤ x ≤ 1). Acta Phys. Pol. A 122, 728 (2012)

    Article  CAS  Google Scholar 

  16. M. Isik, N.M. Gasanly, Ellipsometry study of interband transitions in TlGaS2xSe2(1−x) mixed crystals (0 ≤ x ≤ 1). Opt. Commun. 285, 4092 (2012)

    Article  CAS  Google Scholar 

  17. I.M. Ashraf, F. Abdel-Wahab, High-performance visible light photodetector based on TlGaSSe single crystal. Mater. Lett. 240, 176 (2019)

    Article  CAS  Google Scholar 

  18. A.F. Qasrawi, A. Omar, A.M. Azamtta, N.M. Gasanly, p-TlGaSeS/n-BN heterojunction as a microwave filter and as a photovoltaic device. Phys. Status Solidi A 212, 600 (2015)

    Article  CAS  Google Scholar 

  19. N.M. Gasanly, B.G. Akinoglu, S. Ellialtioglu, R. Laiho, A.E. Bakhyshov, Elastic coefficients in TlGa(S1−xSex) and TlInxGa1−xS2 layer mixed crystals by Brillouin scattering. Phys. B 192, 371 (1993)

    Article  CAS  Google Scholar 

  20. A.M. Panich, Single-crystal NMR for the layered semiconductor TlGaSe2. J. Phys. Condens. Mater. 20, 293202 (2008)

    Article  Google Scholar 

  21. O. Karabulut, K. Yilmaz, B. Boz, Electrical and optical properties of Co doped TlGaS2 crystals. Cryst. Res. Technol. 46, 79 (2011)

    Article  CAS  Google Scholar 

  22. R. Paucar, H. Itsuwa, K. Wakita, Y. Shim, O. Alekperov, N. Mamedov, Phase transitions and Raman scattering spectra of TlGaSe2. J. Phys. Conf. Ser. 619, 012018 (2015)

    Article  Google Scholar 

  23. F.V. Perez, R. Cadenas, C. Power, J. Gonzalez, C.J. Chervin, Raman scattering and phase transition in TlGaS2 under pressure. J. Appl. Phys. 101, 063534 (2007)

    Article  Google Scholar 

  24. T. Livneh, D.O. Dumcenco, I. Pinkas, Determining alloy composition in MoxW(1−x)S2 from low wavenumber Raman spectroscopy. J. Raman Spectrosc. 48, 773 (2017)

    Article  CAS  Google Scholar 

  25. D.O. Dumcenco, K.Y. Chen, Y.P. Wang, Y.S. Huang, K.K. Tiong, Raman study of 2H-Mo1−xWxS2 layered mixed crystals. J. Alloy Compnd. 506, 940 (2010)

    Article  CAS  Google Scholar 

  26. I. Guler, N.M. Gasanly, Gasanly, Raman scattering in TlInS2xSe2(1−x) layered mixed crystals (0.25 ≤ x≤1): compositional dependence of the mode frequencies and line widths. Physica B 406, 3374 (2011)

    Article  CAS  Google Scholar 

  27. C. Ramkumar, K.P. Jain, S.C. Abbi, Raman-scattering probe of anharmonic effects due to temperature and compositional disorder in III–V binary and ternary alloy semiconductors. Phys. Rev. B 53, 13672 (1996)

    Article  CAS  Google Scholar 

  28. Y.M. Yu, D.J. Kim, Y.D. Choi, K.S. Lee, Compositional dependence of the Raman frequencies and line shapes of ZnS1−xTex alloys. J. Appl. Phys. 95, 4894 (2004)

    Article  CAS  Google Scholar 

  29. N.C. Brady, R.R. Weil, Elements of the nature and properties of soils (Prentice Hall, Upper Saddle River, 2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Isik.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isik, M., Terlemezoglu, M., Gasanly, N.M. et al. Vibrational modes in (TlGaS2)x‒(TlGaSe2)1−x mixed crystals by Raman measurements: compositional dependence of the mode frequencies and line-shapes. J Mater Sci: Mater Electron 31, 14330–14335 (2020). https://doi.org/10.1007/s10854-020-03990-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03990-8

Navigation