Skip to main content
Log in

Investigation on luminescence properties using second-generation (G2) triazolyl chalcone dendrimer as stabilizing agent in Ag@SnO2 core–shell nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Ag@SnO2 core–shell nanoparticles were synthesized by a simple, low-cost method using generation 1 (G1) and generation 2 (G2) triazolyl chalcone dendrimer as stabilizing agent. The structural properties were identified using X-ray diffraction (XRD) measurements and transmission electron microscope images. From the XRD values obtained, the average crystallite size and lattice strain of the samples Ag@SnO2-G1 and Ag@SnO2-G2 were calculated using Scherrer formula and the results were compared with size–strain plot. The selected area electron diffraction and XRD analyses exhibited the tetragonal primitive crystal structure with dhkl = 2.3 Å, 1.6 Å and 1.2 Å. The optical properties of the sample were analysed using UV–Visible spectra and photoluminescence (PL) studies. The energy bandgap was calculated using Tau Plot and was found to be direct bandgap of 3.80 eV and 3.85 eV for G1 and G2 samples, respectively. From the PL study, it was evident that the sample Ag@SnO2-G2 emitted photons at 601 nm to the orange region of the visible spectrum confirming a remarkable shift in the wavelength of photonic emission when compared to that of zeroth-generation stabilizer in Ag@SnO2 core–shell nanoparticles. The major shift in the photonic emission exhibits the impact of second-generation dendrimer (G2) on the luminescence property of the synthesized sample and promises favourable results in optoelectronic and photocatalytic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. L.M. Bronstein, Z.B. Shifrina, Dendrimers as encapsulating, stabilizing, or directing agents for inorganic nanoparticles. Chem. Rev. 111, 5301–5344 (2011)

    CAS  Google Scholar 

  2. S. Young-Seok, C. Daeock, Dendritic functionalization of metal nanoparticles for nanoparticle-cored dendrimers. Curr. Nanosci. 3, 245–254 (2007)

    Google Scholar 

  3. A. Kannan, P. Rajakumar, Synthesis and catalytic application of glycodendrimers decorated with gold nanoparticles—reduction of 4-nitrophenol. RSC Adv. 5, 46908–46915 (2015)

    CAS  Google Scholar 

  4. D. Astruc, C. Ornelas, J. Ruiz, Metallocenyl dendrimers and their applications in molecular electronics. Sens. Catal. Acc. Chem. Res. 41, 841–856 (2008)

    CAS  Google Scholar 

  5. M.J. Cloninger, Biological applications of dendrimers. Curr. Opin. Chem. Biol. 6, 742–748 (2002)

    CAS  Google Scholar 

  6. N. Satoh, K. Yamamoto, Application 29—dendrimers and their application to organic electronics devices, in Nanoparticle Technology Handbook, 3rd edn., ed. by M. Naito, T. Yokoyama, K. Hosokawa, K. Nogi (Elsevier, Amsterdam, 2018), pp. 559–562

    Google Scholar 

  7. M.C. Parrott, S.R. Benhabbour, C. Saab, J.A. Lemon, S. Parker, J.F. Valliant, A. Adronov, Synthesis, radiolabeling, and bio-imaging of high-generation polyester dendrimers. J. Am. Chem. Soc. 131, 2906–2916 (2009)

    CAS  Google Scholar 

  8. R. Ghosh Chaudhuri, S. Paria, Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem. Rev. 112, 2373–2433 (2012)

    CAS  Google Scholar 

  9. P. Rai, R. Khan, S. Raj, S.M. Majhi, K.-K. Park, Y.-T. Yu, I.-H. Lee, P.K. Sekhar, Au@Cu2O core–shell nanoparticles as chemiresistors for gas sensor applications: effect of potential barrier modulation on the sensing performance. Nanoscale 6, 581–588 (2014)

    CAS  Google Scholar 

  10. P. Rai, S.M. Majhi, Y.-T. Yu, J.-H. Lee, Synthesis of plasmonic Ag@SnO2 core–shell nanoreactors for xylene detection. RSC Adv. 5, 17653–17659 (2015)

    CAS  Google Scholar 

  11. D.C. Schinca, L.B. Scaffardi, F.A. Videla, G.A. Torchia, P. Moreno, L. Roso, Silver–silver oxide core–shell nanoparticles by femtosecond laser ablation: core and shell sizing by extinction spectroscopy. J. Phys. D Appl. Phys. 42, 215102 (2009)

    Google Scholar 

  12. P. Tan, Y.-H. Li, X.-Q. Liu, Y. Jiang, L.-B. Sun, Core-Shell AgCl@SiO2 nanoparticles: Ag(I)-based antibacterial materials with enhanced stability. ACS Sustain. Chem. Eng. 4, 3268–3275 (2016)

    CAS  Google Scholar 

  13. S. Vaidya, A. Patra, A.K. Ganguli, CdS@TiO2 and ZnS@TiO2 core–shell nanocomposites: synthesis and optical properties. Colloids Surf. A 363, 130–134 (2010)

    CAS  Google Scholar 

  14. J. Singh, S.A. Khan, J. Shah, R.K. Kotnala, S. Mohapatra, Nanostructured TiO2 thin films prepared by RF magnetron sputtering for photocatalytic applications. Appl. Surf. Sci. 422, 953–961 (2017)

    CAS  Google Scholar 

  15. J. Singh, B. Satpati, S. Mohapatra, Structural, optical and plasmonic properties of Ag-TiO2 hybrid plasmonic nanostructures with enhanced photocatalytic activity. Plasmonics 12, 877–888 (2017)

    CAS  Google Scholar 

  16. V. Sharma, S. Kumar, V. Krishnan, Clustered Au on TiO2 Snowman-like nanoassemblies for photocatalytic applications. ChemistrySelect 1, 2963–2970 (2016)

    CAS  Google Scholar 

  17. J. Singh, N. Tripathi, S. Mohapatra, Synthesis of Ag–TiO2 hybrid nanoparticles with enhanced photocatalytic activity by a facile wet chemical method. Nano-Struct. Nano-Objects 18, 100266 (2019)

    CAS  Google Scholar 

  18. J. Singh, K. Sahu, B. Satpati, J. Shah, R.K. Kotnala, S. Mohapatra, Facile synthesis, structural and optical properties of Au-TiO2 plasmonic nanohybrids for photocatalytic applications. J. Phys. Chem. Solids 135, 109100 (2019)

    CAS  Google Scholar 

  19. Z. Zhang, Y. Song, S. Wu, J. Guo, Q. Zhang, J. Wang, J. Yang, Z. Hua, J. Lang, Tuning the defects and luminescence of ZnO:(Er, Sm) nanoflakes for application in organic wastewater treatment. J. Mater. Sci.: Mater. Electron. 30, 15869–15879 (2019)

    CAS  Google Scholar 

  20. J. Singh, S. Juneja, S. Palsaniya, A.K. Manna, R.K. Soni, J. Bhattacharya, Evidence of oxygen defects mediated enhanced photocatalytic and antibacterial performance of ZnO nanorods. Colloids Surf. B 184, 110541 (2019)

    CAS  Google Scholar 

  21. J. Yang, J.Y. Lee, H.-P. Too, Core–shell Ag–Au nanoparticles from replacement reaction in organic medium. J. Phys. Chem. B 109, 19208–19212 (2005)

    CAS  Google Scholar 

  22. R. Vanathi Vijayalakshmi, P.P. Kumar, S. Selvarani, P. Rajakumar, K. Ravichandran, Chalcone dendrimer stabilized core–shell nanoparticles—a comparative study on Co@TiO2, Ag@TiO2 and Co@AgCl nanoparticles for antibacterial and antifungal activity. Mater. Res. Express 4, 105046 (2017)

    Google Scholar 

  23. A.M. Ganose, D.O. Scanlon, Band gap and work function tailoring of SnO2 for improved transparent conducting ability in photovoltaics. J. Mater. Chem. C 4, 1467–1475 (2016)

    CAS  Google Scholar 

  24. X. Fang, J. Yan, L. Hu, H. Liu, P.S. Lee, Thin SnO2 nanowires with uniform diameter as excellent field emitters: a stability of more than 2400 minutes. Adv. Funct. Mater. 22, 1613–1622 (2012)

    CAS  Google Scholar 

  25. M. Hu, F. Teng, H. Chen, M. Jiang, Y. Gu, H. Lu, L. Hu, X. Fang, Novel Ω-shaped core-shell photodetector with high ultraviolet selectivity and enhanced responsivity. Adv. Funct. Mater. 27, 1704477 (2017)

    Google Scholar 

  26. Z. Long, X. Xu, W. Yang, M. Hu, D.V. Shtansky, D. Golberg, X. Fang, Cross-bar SnO2-NiO nanofiber-array-based transparent photodetectors with high detectivity. Adv. Electron. Mater. 6, 1901048 (2020)

    CAS  Google Scholar 

  27. Y. Kim, D.-W. Jeong, J. Lee, M.Y. Song, S.M. Lee, J. Choi, D.-J. Jang, H.J. Kim, Boosting visible-light photocatalytic redox reaction by charge separation in SnO2/ZnSe(N2H4)0.5 heterojunction nanocatalysts. Chem. Eur. J. (2020). https://doi.org/10.1002/chem.202000468

    Article  Google Scholar 

  28. F.J. Arlinghaus, Energy bands in stannic oxide (SnO2). J. Phys. Chem. Solids 35, 931–935 (1974)

    CAS  Google Scholar 

  29. S.A. Ivanov, A. Piryatinski, J. Nanda, S. Tretiak, K.R. Zavadil, W.O. Wallace, D. Werder, V.I. Klimov, Type-II core/shell CdS/ZnSe nanocrystals: synthesis, electronic structures, and spectroscopic properties. J. Am. Chem. Soc. 129, 11708–11719 (2007)

    CAS  Google Scholar 

  30. R.V. Vijayalakshmi, A. Kannan, P.P. Kumar, K. Ravichandran, P. Rajakumar, Effect of stabilizing agents on the conductivity of Co@TiO2 core–shell nanoparticles. Nano-Struct. Nano-Objects 16, 258–265 (2018)

    CAS  Google Scholar 

  31. R.V. Vijayalakshmi, A. Kannan, P.P. Kumar, K. Ravichandran, P. Rajakumar, The role of glycodendrimer in the structural and optical studies of Co@AgCl core-shell nanoparticles. Mater. Chem. Phys. 221, 356–360 (2019)

    CAS  Google Scholar 

  32. R.V. Vijayalakshmi, R. Kuppan, P.P. Kumar, Investigation on the impact of different stabilizing agents on structural, optical properties of Ag@SnO2 core–shell nanoparticles and its biological applications. J. Mol. Liq. 307, 112951 (2020)

    CAS  Google Scholar 

  33. R. Vijayalakshmi, S. Selvarani, P. Kumar, P. Rajakumar, K. Ravichandran, Investigations on structural and optical properties of chalcone dendrimer in Ag@TiO2 core–shell nanoparticles. Appl. Phys. A 124, 759 (2018)

    Google Scholar 

  34. S. Selvarani, P. Rajakumar, Photochemical, electrochemical and cytotoxic studies on azobenzene cored dendrimer decorated with chalcone motif. ChemistrySelect 3, 5455–5460 (2018)

    CAS  Google Scholar 

  35. A.F.M. El-Mahdy, F.-W. Lin, W.-H. Su, T. Chen, S.-W. Kuo, Photoresponsive azobenzene materials based on pyridine-functionalized benzoxazines as surface relief gratings. ACS Appl. Polym. Mater. 2, 791–804 (2020)

    CAS  Google Scholar 

  36. B.D. Cullity, Elements of X-ray Diffraction (Addison-Wesley Publishing Company Inc, Cambridge, 1956)

    Google Scholar 

  37. P.T.S. Bindu, Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis. J Theor Appl Phys 8, 123 (2010)

    Google Scholar 

  38. G.K. Williamson, W.H. Hall, X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1, 22–31 (1953)

    CAS  Google Scholar 

  39. A. Khorsand Zak, W.H. Abd Majid, M.E. Abrishami, R. Yousefi, X-ray analysis of ZnO nanoparticles by Williamson-Hall and size–strain plot methods. Solid State Sci. 13, 251–256 (2011)

    CAS  Google Scholar 

  40. E. Panizon, R. Ferrando, Strain-induced restructuring of the surface in core@shell nanoalloys. Nanoscale 8, 15911–15919 (2016)

    CAS  Google Scholar 

  41. S. Yang, D. Prendergast, J.B. Neaton, Strain-induced band gap modification in coherent core/shell nanostructures. Nano Lett. 10, 3156–3162 (2010)

    CAS  Google Scholar 

  42. F. Liu, H. Huang, Y. Zhang, T. Yu, C. Yuan, S. Ye, Shell thickness-dependent strain distributions of confined Au/Ag and Ag/Au core-shell nanoparticles. Adv. Condens. Matter Phys. 2015, 583863 (2015)

    Google Scholar 

  43. R.K. Kalaiezhily, A. Venkatesan, K. Ravichandran, Luminescence from Zn interstitials due to combustion derived complex of Dy and Gd activated ZnO nanopowders. J. Mater. Sci.: Mater. Electron. 29, 12001–12009 (2018)

    CAS  Google Scholar 

  44. R. Ponnusamy, S.C. Selvaraj, M. Ramachandran, P. Murugan, P.M.G. Nambissan, D. Sivasubramanian, Diverse spectroscopic studies and first-principles investigations of the zinc vacancy mediated ferromagnetism in Mn-doped ZnO nanoparticles. Cryst. Growth Des. 16, 3656–3668 (2016)

    CAS  Google Scholar 

  45. M.B. IlknurTunc, H. Gliemann, M. Grunzea, P. Koelsch, Bandgap determination and charge separation in Ag@TiO2 core shell nanoparticle films. Surf. Interface Anal. 42, 835 (2010)

    Google Scholar 

  46. K. Srinivas, M. Vithal, B. Sreedhar, M.M. Raja, P.V. Reddy, Structural, optical, and magnetic properties of nanocrystalline Co doped SnO2 based diluted magnetic semiconductors. J. Phys. Chem. C 113, 3543–3552 (2009)

    CAS  Google Scholar 

  47. S.K. Tripathy, H.-W. Kwon, Y.-M. Leem, B.-G. Kim, Y.-T. Yu, Ag@SnO2 core–shell structure nanocomposites. Chem. Phys. Lett. 442, 101–104 (2007)

    CAS  Google Scholar 

  48. R.-J. Wu, D.-J. Lin, M.-R. Yu, M.H. Chen, H.-F. Lai, Ag@SnO2 core–shell material for use in fast-response ethanol sensor at room operating temperature. Sens. Actuators B: Chem. 178, 185–191 (2013)

    CAS  Google Scholar 

  49. J.C. Garcia-Martinez, R.M. Crooks, Extraction of Au nanoparticles having narrow size distributions from within dendrimer templates. J. Am. Chem. Soc. 126, 16170–16178 (2004)

    CAS  Google Scholar 

  50. P. Rajakumar, D.T. Ayyavu, R. Sebastian, S. Ganesan, P. Maruthamuthu, Photophysical properties and dye-sensitized solar cell studies on thiadiazole-triazole-chalcone dendrimers. Tetrahedron Lett. 53, 1139–1143 (2011)

    Google Scholar 

  51. A.M. Kasha, S.P. McGlynn, Molecular electronic spectroscopy. Annu. Rev. Phys. Chem. 7, 403–424 (1956)

    CAS  Google Scholar 

  52. M. Kasha, Characterization of electronic transitions in complex molecules. Discuss. Faraday Soc. 9, 14–19 (1950)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Vanathi Vijayalakshmi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vanathi Vijayalakshmi, R., Ravichandran, K. & Selvarani, S. Investigation on luminescence properties using second-generation (G2) triazolyl chalcone dendrimer as stabilizing agent in Ag@SnO2 core–shell nanoparticles. J Mater Sci: Mater Electron 31, 14295–14305 (2020). https://doi.org/10.1007/s10854-020-03986-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03986-4

Navigation