Skip to main content
Log in

Solid-state synthesis of heterogeneous Ni0.5Cu0.5-xZnxFe2O4 spinel oxides with controlled morphology and tunable dielectric properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Heterogeneous Ni0.5Cu0.5−xZnxFe2O4 (0.0 ≤ x ≤ 0.5) nanoparticles are prepared via a green, solventless and additive-free, soft mechanochemical process at room temperature. This solid-state synthetic procedure yields ternary and quaternary oxide nanoparticles with uniform morphology (average particle size: 104–136 nm). X-ray diffraction analyses of Ni0.5Cu0.5−xZnxFe2O4 nanoparticles reveal a cubic spinel structure with crystallite size in the range of 24–31 nm. The lattice parameter (a) and hopping length for tetrahedral (LA) and octahedral (LB) lattice sites are found to increase with the increase in Zn2+ content, while X-ray (ρxrd) and bulk (ρbulk) densities decrease slightly due to increasing lattice volume. Ni0.5Cu0.5−xZnxFe2O4 nanoparticles with (x = 0.2, 0.3, 0.4) exhibit excellent dielectric performance with high permittivity (ε̍ = 92–111) and suppressed dielectric loss (ε̎ = 1.8–2.8) at high frequency (~ 106 Hz). The polarization mechanism is discussed, involving major contributions from the electron hopping (Fe2+  ↔ Fe3+) at the octahedral sites. The influence of Cu2+ and Zn2+ concentration on the cationic distribution and dielectric performance is analyzed. The electrical conductivity is found to follow the power law (σac = n) with n = 0.7, which confirms the ac conduction phenomenon driven by the electron hopping mechanism. The dielectric behavior of Ni0.5Cu0.5−xZnxFe2O4 nanoparticles reveals their potential for applications in high-frequency microwave devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. N. Parsa, R.C. Toonen, IEEE Nanotechnol. Mag. 12, 28 (2018)

    Google Scholar 

  2. C. Stergiou, J. Magn. Magn. Mater. 426, 629 (2017)

    CAS  Google Scholar 

  3. D. Venkatesh, K.V. Ramesh, Mod. Phys. Lett. B 31, 1750318 (2017)

    CAS  Google Scholar 

  4. K.C.B. Naidu, S.R. Kiran, W. Madhuri, I.E.E.E. Trans, Magn. 53, 1 (2017)

    Google Scholar 

  5. H. Wang, Y. Song, X. Ye, H. Wang, W. Liu, L. Yan, ACS Appl. Energy Mater. 1, 3206 (2018)

    CAS  Google Scholar 

  6. B. Ren, Y. Huang, C. Han, M.N. Nadagouda, D.D. Dionysiou, in Ferrites and ferrates: chemistry and applications in sustainable energy and environmental remediation (ACS Publications, Washington, 2016), pp. 79–112

    Google Scholar 

  7. C.M. Park, Y.M. Kim, K.-H. Kim, D. Wang, C. Su, Y. Yoon, Chemosphere 221, 392 (2019)

    CAS  Google Scholar 

  8. R. Khurshid, F. Ali, A. Afzal, Z. Ali, M.T. Qureshi, J. Electrochem. Soc. 166, B258 (2019)

    CAS  Google Scholar 

  9. W. Ma, N. Wang, L. Yang, M. Lv, Z. Zhu, S. Li, J. Mater. Sci. Mater. Electron. (2020)

  10. G. Gan, H. Zhang, Q. Li, J. Li, X. Huang, F. Xie, F. Xu, Q. Zhang, M. Li, T. Liang, J. Alloys Compd. 735, 2634 (2018)

    CAS  Google Scholar 

  11. Z. Zheng, X. Wu, Q. Feng, V.G. Harris, J. Am. Ceram. Soc. 103, 1248 (2020)

    CAS  Google Scholar 

  12. Q.Q. Wang, C.C. Wang, N. Zhang, H. Wang, Y.D. Li, Q.J. Li, S.G. Huang, Y. Yu, Y.M. Guo, Z.Q. Lin, J. Alloys Compd. 745, 401 (2018)

    CAS  Google Scholar 

  13. C. Rayssi, S. El-Kossi, J. Dhahri, K. Khirouni, RSC Adv. 8, 17139 (2018)

    CAS  Google Scholar 

  14. M.S. Bozgeyik, N. Kirkgecit, R.K. Katiyar, R.S. Katiyar, J. Alloys Compd. 819, 153050 (2020)

    Google Scholar 

  15. L. Lv, J.-P. Zhou, Q. Liu, G. Zhu, X.-Z. Chen, X.-B. Bian, P. Liu, Phys. E Low-Dimens. Syst. Nanostruct. 43, 1798 (2011)

    CAS  Google Scholar 

  16. S.E. Jacobo, P.G. Bercoff, Ceram. Int. 42, 7664 (2016)

    CAS  Google Scholar 

  17. L. Sun, R. Zhang, Z. Wang, L. Ju, E. Cao, Y. Zhang, J. Magn. Magn. Mater. 421, 65 (2017)

    CAS  Google Scholar 

  18. T.S. Soliman, A.S. Abouhaswa, J. Mater. Sci. Mater. Electron. 31, 9666 (2020)

    CAS  Google Scholar 

  19. T. Tsuzuki, P.G. McCormick, J. Mater. Sci. 39, 5143 (2004)

    CAS  Google Scholar 

  20. Z.Ž. Lazarević, Č. Jovalekić, A. Milutinović, D. Sekulić, V.N. Ivanovski, A. Rečnik, B. Cekić, N.Ž. Romčević, J. Appl. Phys. 113, 187221 (2013)

    Google Scholar 

  21. Z.Ž. Lazarević, Č. Jovalekić, A. Milutinović, D. Sekulić, M. Slankamenac, M. Romčević, N.Ž. Romčević, Ferroelectrics 448, 1 (2013)

    Google Scholar 

  22. Z.Ž. Lazarević, A.N. Milutinović, Č.D. Jovalekić, V.N. Ivanovski, N. Daneu, I. Mađarević, N.Ž. Romčević, Mater. Res. Bull. 63, 239 (2015)

    Google Scholar 

  23. C.H. Sujatha, K. Venugopal Reddy, K. Sowri Babu, A. Ramachandra Reddy, K.H. Rao, Ceram. Int. 39, 3077 (2013)

    CAS  Google Scholar 

  24. P.A. Jadhav, R.S. Devan, Y.D. Kolekar, B.K. Chougule, J. Phys. Chem. Solids 70, 396 (2009)

    CAS  Google Scholar 

  25. U. Holzwarth, N. Gibson, Nat. Nanotechnol. 6, 534 (2011)

    CAS  Google Scholar 

  26. M. Satalkar, S.N. Kane, J. Phys. Conf. Ser. 755, 012050 (2016)

    Google Scholar 

  27. M. Qayoom, R. Bhat, K. Asokan, M.A. Shah, G.N. Dar, J. Mater. Sci. Mater. Electron. 49, 1215 (2020)

    CAS  Google Scholar 

  28. I. Horcas, R. Fernández, J.M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, A.M. Baro, Rev. Sci. Instrum. 78, 013705 (2007)

    CAS  Google Scholar 

  29. S.M. Yunus, M.A. Asgar, F.U. Ahmed, Nucl. Sci. Appl. 8, 57 (1999)

    CAS  Google Scholar 

  30. M.C. Dimri, A. Verma, S.C. Kashyap, D.C. Dube, O.P. Thakur, C. Prakash, Mater. Sci. Eng. B 133, 42 (2006)

    CAS  Google Scholar 

  31. M. Hashim, S.E. Shirsath, S. Kumar, R. Kumar, A.S. Roy, J. Shah, R.K. Kotnala, J. Alloys Compd. 549, 348 (2013)

    CAS  Google Scholar 

  32. W.M. Haynes, CRC Handbook of Chemistry and Physics, 94th edn. (CRC Press, Boca Raton, 2016)

    Google Scholar 

  33. M.I.A. Abdel Maksoud, G.S. El-Sayyad, M. Abd Elkodous, A.S. Awed, J. Mater. Sci. Mater. Electron. 31, 2598 (2020)

    CAS  Google Scholar 

  34. M. Dhiman, M. Tripathi, S. Singhal, Mater. Chem. Phys. 202, 40 (2017)

    CAS  Google Scholar 

  35. A.R. Chavan, J.S. Kounsalye, R.R. Chilwar, S.B. Kale, K.M. Jadhav, J. Alloys Compd. 769, 1132 (2018)

    CAS  Google Scholar 

  36. B. Yang, Z. Wang, J. Sol-Gel Sci. Technol. 80, 840 (2016)

    CAS  Google Scholar 

  37. T.M. Hammad, J.K. Salem, A.A. Amsha, N.K. Hejazy, J. Alloys Compd. 741, 123 (2018)

    CAS  Google Scholar 

  38. M. Manjurul Haque, M. Huq, M.A. Hakim, Phys. B Condens. Matter 404, 3915 (2009)

    CAS  Google Scholar 

  39. A.V. Raut, R.S. Barkule, D.R. Shengule, K.M. Jadhav, J. Magn. Magn. Mater. 358–359, 87 (2014)

    Google Scholar 

  40. K.C.B. Naidu, W. Madhuri, Int. J. Appl. Ceram. Technol. 13, 1090 (2016)

    Google Scholar 

  41. R. Kumar, M. Kar, Ceram. Int. 42, 6640 (2016)

    CAS  Google Scholar 

  42. W. Rasband, ImageJ 1.52a: image processing and analysis in java (National Institute of Health, Bethesda, 2020)

    Google Scholar 

  43. S.C. Watawe, B.D. Sarwade, S.S. Bellad, B.D. Sutar, B.K. Chougule, J. Magn. Magn. Mater. 214, 55 (2000)

    CAS  Google Scholar 

  44. Y.J. Li, X.M. Chen, R.Z. Hou, Y.H. Tang, Solid State Commun. 137, 120 (2006)

    CAS  Google Scholar 

  45. I. Sadiq, S. Naseem, M. Naeem Ashiq, M.A. Khan, S. Niaz, M.U. Rana, Prog. Nat. Sci. Mater. Int. 25, 419 (2015)

    CAS  Google Scholar 

  46. N.-N. Jiang, Y. Yang, Y.-X. Zhang, J.-P. Zhou, P. Liu, C.-Y. Deng, J. Magn. Magn. Mater. 401, 370 (2016)

    CAS  Google Scholar 

  47. S.U. Haque, K.K. Saikia, G. Murugesan, S. Kalainathan, J. Alloys Compd. 701, 612 (2017)

    Google Scholar 

  48. M.A. Almessiere, B. Unal, Y. Slimani, A. Demir Korkmaz, N.A. Algarou, A. Baykal, Results Phys. 14, 102468 (2019)

    Google Scholar 

  49. K.M. Batoo, M.S. Ansari, Nanoscale Res. Lett. 7, 112 (2012)

    Google Scholar 

  50. A. Verma, O.P. Thakur, C. Prakash, T.C. Goel, R.G. Mendiratta, Mater. Sci. Eng. B 116, 1 (2005)

    Google Scholar 

  51. S.S. Bellad, B.K. Chougule, Mater. Chem. Phys. 66, 58 (2000)

    CAS  Google Scholar 

  52. R.M. Cornell, U. Schwertmann, The iron oxides: structure, properties, reactions, occurrences and uses (Wiley, New York, 2003)

    Google Scholar 

  53. B.M. Greenhoe, M.K. Hassan, J.S. Wiggins, K.A. Mauritz, J. Polym. Sci. Part B Polym. Phys. 54, 1918 (2016)

    CAS  Google Scholar 

  54. N. Rezlescu, E. Rezlescu, Phys. Status Solidi A 23, 575 (1974)

    CAS  Google Scholar 

  55. P.S. Liu, G.F. Chen, Porous materials: processing applications (Butterworth-Heinemann, Boston, 2014), pp. 21–112

    Google Scholar 

  56. G.T. Rado, H. Suhl, Spin arrangements and crystal structure, domains, and micromagnetics: a treatise on modern theory and materials (Academic Press, Cambridge, 2013)

    Google Scholar 

  57. Q. Zhang, G. Chen, G. Dong, G. Zhang, X. Liu, J. Qiu, Q. Zhou, Q. Chen, D. Chen, Chem. Phys. Lett. 482, 228 (2009)

    CAS  Google Scholar 

  58. M.F. Al-Hilli, S. Li, K.S. Kassim, Mater. Chem. Phys. 128, 127 (2011)

    CAS  Google Scholar 

  59. T. Krishnaveni, B.R. Kanth, V.S.R. Raju, S.R. Murthy, J. Alloys Compd. 414, 282 (2006)

    CAS  Google Scholar 

  60. B.I. Kharisov, O.V. Kharissova, U. Ortiz-Mendez, CRC concise encyclopedia of nanotechnology (CRC Press, Boca Raton, 2016)

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support provided by King AbdulAziz City for Science and Technology (KACST) through the Science and Technology Unit at King Fahd University of Petroleum and Minerals (KFUPM) for this work through project No.13-NAN467-04 as part of the National Science, Technology, and Innovation Plan. AA and FAA are grateful to SB Waje and MA Atieh for their help in the characterization of samples and discussions of the outcomes.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Adeel Afzal or Faraj Ahmad Abuilaiwi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afzal, A., Abuilaiwi, F.A., Javaid, R. et al. Solid-state synthesis of heterogeneous Ni0.5Cu0.5-xZnxFe2O4 spinel oxides with controlled morphology and tunable dielectric properties. J Mater Sci: Mater Electron 31, 14261–14270 (2020). https://doi.org/10.1007/s10854-020-03982-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03982-8

Navigation