Skip to main content
Log in

Fast and facile sonochemical synthesis of Mg- and Zn-doped PbS nanospheres: optical properties and photocatalytic activity

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, Mg2+- and Zn2+-doped PbS nanopowders were synthesized simply and quickly by a sonochemical method. The nanopowders were characterized by X-ray diffraction, wavelength dispersive X-ray fluorescence, scanning electron microscopy, and ultraviolet–visible spectroscopy. The photocatalytic activity was estimated by methylene blue dye degradation. The sonochemical method produces crystalline PbS particles with cubic structure and free of secondary phases. The use of polyvinylpyrrolidone as a surfactant, and reaction medium at pH 13, results in the formation of nanospheres with diameter ranging from 31.4 to 114.5 nm. Doping favors the absorption of radiation in the visible region, and consequently, reduces the optical bandgap of the PbS. Photocatalytic assays show that magnesium and zinc codoping results in 80% reduction of methylene blue concentration after 180 min, while undoped PbS achieves only 42%. Tests with charge scavengers indicate that holes (h+) act as the main mechanism in the photocatalytic process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Babaahamdi-Milani, A. Nezamzadeh-Ejhieh, A comprehensive study on photocatalytic activity of supported Ni/Pb sulfide and oxide systems onto natural zeolite nanoparticles. J. Hazard. Mater. 318, 291–301 (2016)

    CAS  Google Scholar 

  2. V.R. Raja, D.R. Rosaline, A. Suganthi, M. Rajarajan, Facile fabrication of PbS/MoS2 nanocomposite photocatalyst with efficient photocatalytic activity under visible light. Solid State Sci. 67, 99–108 (2017)

    CAS  Google Scholar 

  3. M. Nasirian, C.F. Bustillo-Lecompte, M. Mehrvar, Photocatalytic efficiency of Fe2O3/TiO2 for the degradation of typical dyes in textile industries: effects of calcination temperature and UV-assisted thermal synthesis. J. Environ. Manag. 196, 487–498 (2017)

    CAS  Google Scholar 

  4. C.M. Malengreaux, S.L. Pirard, G. Léonard, J.G. Mahy, M. Herlitschke, B. Klobes, R. Hermann, B. Heinrichs, J.R. Bartlett, Study of the photocatalytic activity of Fe3+, Cr3+, La3+ and Eu3+ single-doped and co-doped TiO2 catalysts produced by aqueous sol–gel processing. J. Alloys Compds. 691, 726–738 (2017)

    CAS  Google Scholar 

  5. M.I. Litter, Heterogeneous photocatalysis: transition metal ions in photocatalytic systems. Appl. Catal. B 23, 89–114 (1999)

    CAS  Google Scholar 

  6. M. Rauf, S.S. Ashraf, Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution. Chem. Eng. J. 151, 10–18 (2009)

    CAS  Google Scholar 

  7. N.F. Andrade Neto, K.N. Matsui, C.A. Paskocimas, M.R.D. Bomio, F.V. Motta, Study of the photocatalysis and increase of antimicrobial properties of Fe3+ and Pb2+ co-doped ZnO nanoparticles obtained by microwave-assisted hydrothermal method. Mater. Sci. Semicond. Process. 93, 123–133 (2019)

    CAS  Google Scholar 

  8. N.F. Andrade Neto, P. Zanatta, L.E. Nascimento, R.M. Nascimento, M.R.D. Bomio, F.V. Motta, Characterization and photoluminescent, photocatalytic and antimicrobial properties of boron-doped TiO2 nanoparticles obtained by microwave-assisted solvothermic method. J. Electron. Mater. 48, 3145–3156 (2019)

    CAS  Google Scholar 

  9. E. Craciun, L. Predoana, I. Atkinson, I. Jitaru, E.M. Anghel, V. Bratan, C. Gifu, C. Anastasescu, A. Rusu, V. Raditoiu, Fe3+-doped TiO2 nanopowders for photocatalytic mineralization of oxalic acid under solar light irradiation. J. Photochem. Photobiol. A 356, 18–28 (2018)

    CAS  Google Scholar 

  10. K. Deka, M.P. Kalita, Structural phase controlled transition metal (Fe Co, Ni, Mn) doping in CdS nanocrystals and their optical, magnetic and photocatalytic properties. J. Alloys Compds. 757, 209–220 (2018)

    CAS  Google Scholar 

  11. N.A. Neto, L. Garcia, E. Longo, M. Li, C. Paskocimas, M. Bomio, F. Motta, Photoluminescence and photocatalytic properties of Ag/AgCl synthesized by sonochemistry: statistical experimental design. J. Mater. Sci. Mater. Electron. 28, 12273–12281 (2017)

    Google Scholar 

  12. M. Sathya, K. Pushpanathan, Synthesis and optical properties of Pb doped ZnO nanoparticles. Appl. Surf. Sci. 449, 346–357 (2018)

    CAS  Google Scholar 

  13. M. Ashokkumar, A. Boopathyraja, Structural and optical properties of Mg doped ZnS quantum dots and biological applications. Superlattices Microstruct. 113, 236–243 (2018)

    CAS  Google Scholar 

  14. K. Hedayati, M. Kord, M. Goodarzi, D. Ghanbari, S. Gharigh, Photo-catalyst and magnetic nanocomposites: hydrothermal preparation of core–shell Fe3O4@PbS for photo-degradation of toxic dyes. J. Mater. Sci. Mater. Electron. 28, 1577–1589 (2017)

    CAS  Google Scholar 

  15. Z.Q. Mamiyev, N.O. Balayeva, Preparation and optical studies of PbS nanoparticles. Opt. Mater. 46, 522–525 (2015)

    CAS  Google Scholar 

  16. Y.V. Reddy, T.M. Kumar, T. Shekharam, M. Nagabhushanam, Low temperature DC electrical conductivity studies of Pb1−xZnxS semiconductor compounds. Solid State Sci. 82, 29–33 (2018)

    Google Scholar 

  17. Y.-L. Lu, S. Dong, B. Zhou, S. Dai, H. Zhao, P. Wu, Tuning electronic and magnetic properties of V-, Cr-, and Mn-doped PbS via strain engineering: a first-principles proposal. Mater. Sci. Eng. B 228, 1–6 (2018)

    CAS  Google Scholar 

  18. E. Yücel, Y. Yücel, Effect of doping concentration on the structural, morphological and optical properties of Ca-doped PbS thin films grown by CBD. Optik 142, 82–89 (2017)

    Google Scholar 

  19. M.C. Portillo, J.A. Pulido, S.G. Hernández, B.S. Cruz, S.A. Iniesta, R.G. Pérez, O.P. Moreno, Voc enhancement of a solar cell with doped Li+–PbS as the active layer. Superlattices Microstruct. 118, 137–144 (2018)

    Google Scholar 

  20. M. Suganya, S. Anitha, D. Prabha, S. Balamurugan, J. Srivind, A. Balu, Enhanced photocatalytic and antifungal properties of Sr-doped PbS nanopowders. Mater. Technol. 33, 214–219 (2018)

    CAS  Google Scholar 

  21. Y.-L. Lu, S. Dong, W. Zhou, Y. Liu, H. Zhao, P. Wu, Influences of isotropic strain on the electronic and magnetic properties of Fe-, Co-, and Ni-doped PbS revealed by density functional calculations. Mater. Chem. Phys. 223, 133–139 (2019)

    CAS  Google Scholar 

  22. M. Liu, W. Li, Y. Wang, Q. He, Fabrication, characterization and simulation of Zn-doped PbS nanopowder. Phys. B 545, 245–249 (2018)

    CAS  Google Scholar 

  23. A. Gassoumi, S. Alleg, N. Kamoun-Turki, Influencing the structural, microstructural and optical properties of PbS nanocrystalline thin films by Mg2+ doping. J. Mol. Struct. 1116, 67–71 (2016)

    CAS  Google Scholar 

  24. M.A. Hines, G.D. Scholes, Colloidal PbS nanocrystals with size-tunable near-infrared emission: observation of post-synthesis self-narrowing of the particle size distribution. Adv. Mater. 15, 1844–1849 (2003)

    CAS  Google Scholar 

  25. X. Zheng, S. Das, Y. Gu, S. Liu, J. Zhao, Optimal engineering of CdS/PbS co-sensitized TiO2 nanotube arrays for enhanced photoelectrochemical performance. Ceram. Int. 46(8B), 12050–12058 (2020)

    CAS  Google Scholar 

  26. R. Gaur, Morphology dependent activity of PbS nanostructures for electrochemical sensing of dopamine. Mater. Lett. 264, 127333 (2020)

    CAS  Google Scholar 

  27. N.F. Andrade Neto, Y.G. Oliveira, C.A. Paskocimas, M.R.D. Bomio, F.V. Motta, Increase of antimicrobial and photocatalytic properties of silver-doped PbS obtained by sonochemical method. J. Mater. Sci. Mater. Electron. 29, 19052–19062 (2018)

    CAS  Google Scholar 

  28. S. Sharma, A. Venkata Dhanunjaya Reddy, N. Jayarambabu, N. Vikram Manoj Kumar, A. Saineetha, S. Kailasa, K. Venkateswara Rao, Micro-structural, optical and vibrational spectra analysis of lead sulphide, cadmium doped PbS and strontium doped PbS nano-structured thin films synthesized through successive ionic layer adsorption and reaction technique for solar cell and infrared detector sensor applications. Mater. Today Proc. 26(1), 162–171 (2019)

    Google Scholar 

  29. B. Toby, EXPGUI, a graphical user interface for GSAS. J. Appl. Crystallogr. 34, 210–213 (2001)

    CAS  Google Scholar 

  30. B. Dindar, A.C. Güler, Comparison of facile synthesized N doped, B doped and undoped ZnO for the photocatalytic removal of Rhodamine B. Environ. Nanotechnol. Monit. Manag. 10, 457–466 (2018)

    Google Scholar 

  31. J.C. Phillips, Tauc networks and Tauc edges: a review. J. Non-cryst. Solids 141, 1–2 (1992)

    CAS  Google Scholar 

  32. N.F. Andrade Neto, P.M. Oliveira, M.R.D. Bomio, F.V. Motta, Effect of temperature on the morphology and optical properties of Ag2WO4 obtained by the co-precipitation method: photocatalytic activity. Ceram. Int. 45, 15205–15212 (2019)

    CAS  Google Scholar 

  33. M. Behboudnia, A. Habibi-Yangjeh, Y. Jafari-Tarzanag, A. Khodayari, Facile and room temperature preparation and characterization of PbS nanoparticles in aqueous [EMIM][EtSO4] ionic liquid using ultrasonic irradiation. Bull. Korean Chem. Soc. 29(1), 53–56 (2008)

    Google Scholar 

  34. R. Yoo, A.T. Güntner, Y. Park, H.J. Rim, H.-S. Lee, W. Lee, Sensing of acetone by Al-doped ZnO. Sens. Actuators B 283, 107–115 (2019)

    CAS  Google Scholar 

  35. K. Momma, F. Izumi, VESTA: a three-dimensional visualization system for electronic and structural analysis. J. Appl. Crystallogr. 41, 653–658 (2008)

    CAS  Google Scholar 

  36. A. Nakrela, N. Benramdane, A. Bouzidi, Z. Kebbab, M. Medles, C. Mathieu, Site location of Al-dopant in ZnO lattice by exploiting the structural and optical characterisation of ZnO: Al thin films. Results Phys. 6, 133–138 (2016)

    Google Scholar 

  37. N. Zhang, X. Zou, Y. Gao, Heterovalent cation substitutional and interstitial doping in semiconductor sensitizers for quantum dot cosensitized solar cell. Int. J. Photoenergy 2015, 326850 (2015)

    Google Scholar 

  38. M. Liu, Q. Zhan, W. Li, R. Li, Q. He, Y. Wang, Effect of Zn doping concentration on optical band gap of PbS thin films. J. Alloys Compds. 792, 1000–1007 (2019)

    CAS  Google Scholar 

  39. S.F. Wang, F. Gu, M.K. Lu, Sonochemical synthesis of hollow PbS nanospheres. Langmuir 22, 398–401 (2006)

    Google Scholar 

  40. J. Ye, L. Sun, S. Gao, Fabrication of hollow PbS nanospheres and application in phenol release. SpringerPlus 2, 323 (2013)

    Google Scholar 

  41. N.F.A. Neto, B.P. Dias, R.L. Tranquilin, E. Longo, M. Li, M.R.D. Bomio, F.V. Motta, Synthesis and characterization of Ag+ and Zn2+ co-doped CaWO4 nanoparticles by a fast and facile sonochemical method. J. Alloys Compds. 823, 153617 (2020)

    Google Scholar 

  42. Q. Liang, X. Liu, G. Zeng, Z. Liu, L. Tang, B. Shao, Z. Zeng, W. Zhang, Y. Liu, M. Cheng, W. Tang, S. Gong, Surfactant-assisted synthesis of photocatalysts: mechanism, synthesis, recent advances and environmental application. Chem. Eng. J. 372, 429–451 (2019)

    CAS  Google Scholar 

  43. S. Asgharzadehahmadi, A.A. Abdul Raman, R. Parthasarathy, B. Sajjadi, Sonochemical reactors: review on features, advantages and limitations. Renew. Sustain. Energy Rev. 63, 302–314 (2016)

    CAS  Google Scholar 

  44. M. Hassanpour, S.A.H. Tafreshi, O. Amiri, M. Hamadanian, M. Salavati-Niasari, Toxic effects of Fe2WO6 nanoparticles towards microalga Dunaliella salina: sonochemical synthesis nanoparticles and investigate its impact on the growth. Chemosphere 258, 127348 (2020)

    CAS  Google Scholar 

  45. H. Wang, J.-R. Zhang, J.-J. Zhu, Sonochemical preparation of lead sulfide nanocrystals in an oil-in-water microemulsion. J. Cryst. Growth 246, 161–168 (2002)

    CAS  Google Scholar 

  46. J. Zhu, S. Liu, O. Palchik, Y. Koltypin, A. Gedanken, A novel sonochemical method for the preparation of nanophasic sulfides: synthesis of HgS and PbS nanoparticles. J. Solid State Chem. 153, 342–348 (2000)

    CAS  Google Scholar 

  47. M. Molaei, S. Abbasi, M. Karimipour, F. Dehghan, A simple UV-assisted, room temperature approach for synthesis of water soluble PbS and PbS/CdS core–shell QDs. Mater. Chem. Phys. 216, 186–190 (2018)

    CAS  Google Scholar 

  48. A.L. Stroyuk, A.E. Raevskaya, S.Y. Kuchmii, The effect of PbS nanoparticles on the formation of PbSe in aqueous solutions of sodium selenosulfate and lead(II). Theor. Exp. Chem. 42(6), 346–351 (2006)

    CAS  Google Scholar 

  49. F.D. Martinez-Mancera, J.L. Hernandez-Lopez, Physical characterization and photoluminescence properties of thioglycolic acid-stabilized lead sulfide nanocrystals. Mater. Chem. Phys. 148, 1045–1054 (2014)

    CAS  Google Scholar 

  50. D.L. Wood, J. Tauc, Weak absorption tails in amorphous semiconductors. Phys. Rev. B 5(8), 3144–3151 (1972)

    Google Scholar 

  51. P. Makuła, M. Pacia, W. Macyk, How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV−Vis spectra. J. Phys. Chem. Lett. 9, 6814–6817 (2018)

    Google Scholar 

  52. V. Krishnakumar, G. Shanmugam, R. Nagalakshmi, Large third-order optical nonlinearity of Mg-doped PbS/PVA freestanding nanocomposite films. J. Phys. D 45, 165102 (2012)

    Google Scholar 

  53. A. Sarkar, S. Ghosh, S. Chaudhuri, A.K. Pal, Studies on electron transport properties and the Burstein-Moss shift in indium-doped ZnO films. Thin Solid Films 204, 255–264 (1991)

    CAS  Google Scholar 

  54. A.A.G. Santiago, N.F. Andrade Neto, E. Longo, C.A. Paskocimas, F.V. Motta, M.R.D. Bomio, Fast and continuous obtaining of Eu3+ doped CeO2 microspheres by ultrasonic spray pyrolysis: characterization and photocatalytic activity. J. Mater. Sci. Mater. Electron. 30, 11508–11519 (2019)

    CAS  Google Scholar 

  55. N.F. Andrade Neto, E. Longo, K.N. Matsui, C.A. Paskocimas, M.R.D. Bomio, F.V. Motta, Photocatalytic properties under sunlight of heterostructures AgCl/CuO obtained by sonochemical method. Plasmonics 14, 79–89 (2019)

    CAS  Google Scholar 

  56. P.A. Ajibade, A.E. Oluwalana, Synthesis and crystal structure of bis(O-methyl hydrogenato carbonodithioate)–Pb(II): structural, optical and photocatalytic studies of PbS nanoparticles from the complex. J. Coord. Chem. 72, 3575–3588 (2019)

    CAS  Google Scholar 

  57. C.H. Nguyen, C.-C. Fu, R.-S. Juang, Degradation of methylene blue and methyl orange by palladium-doped TiO2 photocatalysis for water reuse: efficiency and degradation pathways. J. Clean. Prod. 202, 413–427 (2018)

    CAS  Google Scholar 

  58. S. Varnagiris, A. Medvids, M. Lelis, D. Milcius, A. Antuzevics, Black carbon-doped TiO2 films: synthesis, characterization and photocatalysis. J. Photochem. Photobiol. A 382, 111941 (2019)

    CAS  Google Scholar 

  59. W. Wang, M.O. Tadé, Z. Shao, Nitrogen-doped simple and complex oxides for photocatalysis: a review. Prog. Mater. Sci. 92, 33–63 (2018)

    Google Scholar 

  60. D. Wang, S. Wang, B. Li, Z. Zhang, Q. Zhang, Tunable band gap of NV co-doped Ca:TiO2B (CaTi5O11) for visible-light photocatalysis. Int. J. Hydrog. Energy 44, 4716–4723 (2019)

    CAS  Google Scholar 

  61. Z. Li, X. Meng, Z. Zhang, Few-layer MoS2 nanosheets-deposited on Bi2MoO6 microspheres: a Z-scheme visible-light photocatalyst with enhanced activity. Catal. Today 315, 67–78 (2018)

    CAS  Google Scholar 

  62. D. Chen, S. Wu, J. Fang, S. Lu, G. Zhou, W. Feng, F. Yang, Y. Chen, Z. Fang, A nanosheet-like α-Bi2O3/g-C3N4 heterostructure modified by plasmonic metallic Bi and oxygen vacancies with high photodegradation activity of organic pollutants. Sep. Purif. Technol. 193, 232–241 (2018)

    CAS  Google Scholar 

Download references

Acknowledgement

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brasil (CAPES/PROCAD): Finance Code 2013/2998/2014 and Finance Code 001. The authors thank the financial support of the Brazilian research financing institution: CNPq No. 307546/2014, and the technical support of the Natural Sciences and Engineering Research Council of Canada, RGPIN-201904839.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. F. Andrade Neto.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2520 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andrade Neto, N.F., Ramalho, O.B.M., Fantucci, H. et al. Fast and facile sonochemical synthesis of Mg- and Zn-doped PbS nanospheres: optical properties and photocatalytic activity. J Mater Sci: Mater Electron 31, 14192–14202 (2020). https://doi.org/10.1007/s10854-020-03975-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03975-7

Navigation