Skip to main content

Advertisement

Log in

Tailored dielectric, optical properties and photocatalytic performance of Mg–Zn nanoferrites by Cu2+ substitution

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This research article is focused on the scrutinization of dielectric, optical and photocatalytic activity of Mg0.8Zn0.2−xCuxFe2O4 (MZC) nanoferrites upon the substitution of Cu2+ ions range (0 ≤ x ≤ 0.2; step 0.04). The dielectric constant and conductivity of MZC nanoferrite manifested the higher values than the pristine one. This leveraging demeanor is originated from the effective role of Fe2+ and Fe3+ in octahedral sites; as a result of occupying Cu ions in tetrahedral sites only. All MZC nanoferrites have the two types of losses; conduction and relaxation losses. The conduction process of MZC nanoferrites is attributed to three different species through different temperature ranges. Nyquist plot manifested that grain and grain boundary resistances were decreased and relaxation time enhanced from 0.79 to 7.95 µs with Cu substitution. Tauc's plots introduced direct allowed Eg for MZC nanoparticles with a red shift from (2.16 eV at x = 0.0 to 1.67 eV at x = 0.2). The degradation efficiency of RhB over MZC photocatalyst is enhanced comparing with that of pristine RhB; 92.39% for x = 0.2 in 300 min. The nanoferrite Mg0.8Cu0.2Fe2O4 (x = 0.2) has the optimal merits; highest dielectric constant, conductivity, photodegradation percentage, besides lowest energy gap and moderate loss make it advisable for sundry applications as an excellent photocatalyst for wastewater treatment besides high-frequency applications and transformers cores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. S.F. Mansour, R. Al-Wafi, M.A. Abdo, Zn-Mg-La nanoferrites for storage and high frequency devices with augmenting the photocatalytic performance. J. Alloys Compd. 826, 154125 (2020)

    CAS  Google Scholar 

  2. M. Sundararajan, V. Sailaja, L.J. Kennedy, J.J. Vijaya, Photocatalytic degradation of rhodamine B under visible light using nanostructured zinc doped cobalt ferrite: kinetics and mechanism. Ceram. Int. 43, 540–548 (2017)

    CAS  Google Scholar 

  3. S.K. Rashmi, H.S.B. Naik, H. Jayadevappa, R. Viswanath, M.M. Naik, S.B. Patil, Solar light responsive Sm-Zn ferrite nanoparticle as efficient photocatalyst. Mater. Sci. Eng. B 225, 86–97 (2017)

    CAS  Google Scholar 

  4. Q.L. Liu, Z.Y. Zhao, R.D. Zhao, J.H. Yi, Fundamental properties of delafossite CuFeO2 as photocatalyst for solar energy conversion. J. Alloys Compd. 819, 153032 (2020)

    CAS  Google Scholar 

  5. V. Kusigerski, E. Illes, J. Blanusa, S. Gyergyek, M. Boskovic, M. Perovic, V. Spasojevic, Magnetic properties and heating efficacy of magnesium doped magnetite nanoparticles obtained by co-precipitation method. J. Magn. Magn. Mater. 475, 470–478 (2019)

    CAS  Google Scholar 

  6. D. Mehta, S. Mazumdar, S.K. Singh, Magnetic adsorbents for the treatment of water/wastewater: a review. J. Water Process Eng. 7, 244–265 (2015)

    Google Scholar 

  7. K.K. Kefeni, B.B. Mamba, T.A.M. Msagati, Application of spinel ferrite nanoparticles in water and wastewater treatment: a review. Sep. Purif. Technol. 188, 399–422 (2017)

    CAS  Google Scholar 

  8. K.K. Kefeni, B.B. Mamba, Photocatalytic application of spinel ferrite nanoparticles and nanocomposites in wastewater treatment: review. Sustain. Mater. Technol. 23, e00140 (2020)

    CAS  Google Scholar 

  9. N.S. Al-Bassami, S.F. Mansour, M.A. Abdo, The Magneto-mechanical properties of cobalt substituted Mg-Zn nanoferrites. J. Supercond. Novel Magn. (2020). https://doi.org/10.1007/s10948-020-05562-7

    Article  Google Scholar 

  10. R. Sharma, P. Thakur, M. Kumar, N. Thakur, N.S. Negi, P. Sharma, V. Sharma, Improvement in magnetic behaviour of cobalt doped magnesium zinc nano-ferrites via Co-precipitation route. J. Alloys Compd. 684, 569–581 (2016)

    CAS  Google Scholar 

  11. R. Yadav, I. Kuritka, J. Vilcakova, P. Urbanek, M. Machovsky, M. Masa, M. Holek, Structural, magnetic, optical, dielectric, electrical and modulus spectroscopic characteristics of ZnFe2O4 spinel ferrite nanoparticles synthesized via honey mediated sol-gel combustion method. J. Phys. Chem. Solids 110, 87–99 (2017)

    CAS  Google Scholar 

  12. I. Mindru, D. Gingasu, L. Patron, G. Marinescu, J.M. Calderon-Moreno, L. Diamandescu, S. Preda, O. Oprea, Chromium substituted copper ferrites via gluconate precursor route. Ceram. Int. 41, 5318–5330 (2015)

    CAS  Google Scholar 

  13. M.M. Rashad, S. Soltan, A.A. Ramadan, M.F. Bekheet, D.A. Rayan, Investigation of the structural, optical and magnetic properties of CuO/CuFe2O4 nanocomposites synthesized via simple microemulsion method. Ceram. Int. 41, 12237–12245 (2015)

    CAS  Google Scholar 

  14. R. Sharma, P. Thakur, M. Kumar, P. Sharma, V. Sharma, Nanomaterials for high frequency device and photocatalytic applications: Mg-Zn-Ni ferrites. J. Alloys Compd. 746, 532–539 (2018)

    CAS  Google Scholar 

  15. N.M. Basfer, S.F. Mansour, F. Al-Hazmi, The influence of Cu2+ Substitution on theoretical and experimental magneto-mechanical properties of Mg–Zn nanoferrites. J. Mater. Sci. 31, 10889–10902 (2020)

    CAS  Google Scholar 

  16. S.F. Mansour, M.A. Abdo, S.M. Alwan, The role of Cr3+ ions substitution on structural, magnetic and dielectric modulus of manganese zinc nanoferrites. Ceram. Int. 44, 8035–8042 (2018)

    CAS  Google Scholar 

  17. M. Vadivel, R.R. Babu, K. Sethuraman, K. Ramamurthi, M. Arivanandhan, Synthesis, structural, dielectric, magnetic and optical properties of Cr substituted CoFe2O4 nanoparticles by co-precipitation method. J. Magn. Magn. Mater. 362, 122–129 (2014)

    CAS  Google Scholar 

  18. S.F. Mansour, M.A. Ahmed, S.I. El-Dek, M.A. Abdo, H.H. Kora, Enhancement of the physical properties of novel (1–x) NiFe2O4 +(x) Al2O3 nanocomposite. Appl. Phys. A 123, 480 (2017)

    Google Scholar 

  19. C.G. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audio frequencies. Phys. Rev. 83, 121–124 (1951)

    CAS  Google Scholar 

  20. M.A. Ahmed, S.F. Mansour, M.A. Abdo, Electrical properties of Cu substituted Co nano ferrite. Phys. Scr. 86, 025705–025713 (2012)

    Google Scholar 

  21. M.A. Ahmed, S.F. Mansour, M.A. Abdo, Improvement of the physical properties of novel (1-y) Co0.8Cu0.2Fe2O4+ (y)SrTiO3 nanocomposite. Mater. Res. Bull. 48, 1796–1805 (2013)

    CAS  Google Scholar 

  22. N. Sivakumar, A. Narayanasamy, K. Shinoda, C.N. Chinnasamy, B. Jeyadevan, J.M. Greneche, Electrical and magnetic properties of chemically derived nanocrystalline cobalt ferrite. J. Appl. Phys. 102, 013916–013923 (2007)

    Google Scholar 

  23. P. Choudhary, D. Varshney, Dielectric relaxation behavior and impedance studies of Cu2+ ion doped Mg–Zn spinel nanoferrites. Solid State Commun 271, 89–96 (2018)

    CAS  Google Scholar 

  24. D. Ravinder, K. Latha, Dielectric behaviour of mixed Mg–Zn ferrites at low frequencies. Mater. Lett. 41, 247–253 (1999)

    CAS  Google Scholar 

  25. S.F. Mansour, M.A. Abdo, Electrical modulus and dielectric behavior of Cr3+ substituted Mg–Zn nanoferrites. J. Magn. Magn. Mater. 428, 300–305 (2017)

    CAS  Google Scholar 

  26. M.A. Ahmed, S.T. Bishay, G. Abdelatif, Effect of ytterbium on the electrical properties of Li–Co ferrite. J. Phys. Chem. Solids 62, 1039–1046 (2001)

    CAS  Google Scholar 

  27. B. Tareev, Physics of Dielectric Materials (Mir publishers, Mosco, 1973)

    Google Scholar 

  28. S.F. Mansour, N.G. Imam, S. Goda, M.A. Abdo, Constructive coupling between BiFeO3 and CoFe2O4; promising magnetic and dielectric properties. J. Mater. Res. Technol. 9, 1434–1446 (2020)

    CAS  Google Scholar 

  29. M. Hashim, S. Kumar, S.E. Shirsath, E.M. Mohammed, H. Chung, R. Kumar, Studies on the activation energy from the ac conductivity measurements of rubber ferrite composites containing manganese zinc ferrite. Phys. B 407, 4097–4103 (2012)

    CAS  Google Scholar 

  30. S.F. Mansour, M.A. Abdo, F.L. Kzar, Effect of Cr dopant on the structural, magnetic and dielectric properties of Cu-Zn nanoferrites. J. Magn. Magn. Mater. 465, 176–185 (2018)

    CAS  Google Scholar 

  31. S.F. Mansour, O.M. Hemeda, M.A. Abdo, W.A. Nada, Improvement on the magnetic and dielectric behavior of hard/soft ferrite nanocomposites. J. Mol. Struct. 1152, 207–214 (2018)

    CAS  Google Scholar 

  32. S.F. Mansour, A. Dawood, M.A. Abdo, Enhanced magnetic and dielectric properties of doped Co–Zn ferrite nanoparticles by virtue of Cr3+ role. J. Mater. Sci. 30, 17262–17275 (2019)

    CAS  Google Scholar 

  33. S.I. Ahmad, A. Rauf, T. Mohammed, A. Bahafi, D.R. Kumar, M.B. Suresh, R. Kumar, Dielectric, impedance, AC conductivity and low-temperature magnetic studies of Ce and Sm co-substituted nanocrystalline cobalt ferrite. J. Magn. Magn. Mater. 492, 165666 (2019)

    CAS  Google Scholar 

  34. R.S. Yadav, I. Kuřitka, J. Havlica, M. Hnatko, C. Alexander, J. Masilko, L. Kalina, M. Hajdúchová, J. Rusnak, V. Enev, Structural, magnetic, elastic, dielectric and electrical properties of hot-press sintered Co1-xZnxFe2O4 (x= 0.0,0.5) spinel ferrite nanoparticles. J. Magn. Magn. Mater. 447, 48–57 (2018)

    Google Scholar 

  35. M. Hashim, S.S. Meena, R.K. Kotnala, S.E. Shirsath, A.S. Roy, A. Parveen, P. Bhatt, S. Kumar, R.B. Jotania, R. Kumar, Study of structural, electrical and magnetic properties of Cr doped Ni–Mg ferrite nanoparticle. J. Alloys Compd. 602, 150–156 (2014)

    CAS  Google Scholar 

  36. M. Hashim, S. Alimuddin, S. Kumar, B.H. Koo, S.E. Shirsath, E.M. Mohammed, J. Shah, R.K. Kotnala, H.K. Choi, H. Chung, R. Kumar, Structural, electrical and magnetic properties of Co-Cu ferrite nanoparticles. J. Alloys Compd. 518, 11–18 (2012)

    CAS  Google Scholar 

  37. L. Zhang, F. Liu, K. Brinkman, K.L. Reifsnider, A.V. Virkar, A study of gadolinia-doped ceria electrolyte by electrochemical impedance spectroscopy. J. Power Sour. 247, 947–960 (2014)

    CAS  Google Scholar 

  38. S.F. Mansour, F. Al-Hazmi, M.A. Abdo, Relaxation time enhancement of cobalt zinc nanoferrites via Cr3+ doping. J. Alloys Compd. 792, 626–637 (2019)

    CAS  Google Scholar 

  39. A.F. Mansour, S.F. Mansour, M.A. Abdo, Improvement structural and optical properties of ZnO/ PVA nanocomposites. IOSR-JAP 7, 60–69 (2015)

    Google Scholar 

  40. S. Jauhar, S. Singahl, M. Dhiman, Manganese substituted cobalt ferrites as efficient catalysts for H2O2 assisted degradation of cationic and anionic dyes: their synthesis and characterization. Appl. Catal. A Gen. 81, 831–843 (2017)

    Google Scholar 

  41. R. Maity, A.P. Sakhya, A. Dutta, T.P. Sinha, Investigation of concentration dependent electrical and photocatalytic properties of Mn doped SmFeO3. Mater. Chem. Phys. 223, 78–87 (2019)

    CAS  Google Scholar 

  42. S.K. Rashmi, H.S. Naik, H. Jayadevappa, C.N. Sudhamani, S.B. Patil, M.M. Naik, Influence of Sm3+ ions on structural, optical and solar light driven photocatalytic activity of spinel MnFe2O4 nanoparticles. J. Solid State Chem. 255, 178–192 (2017)

    CAS  Google Scholar 

  43. Q. Wu, Z. Yu, Y. Wu, Z. Gao, H. Xie, The magnetic and photocatalytic properties of nanocomposites SrFe12O19/ZnFe2O4. J. Magn. Magn. Mater. 465, 1–8 (2018)

    CAS  Google Scholar 

  44. T. Vijayaraghavan, S.P. Suriyaraj, R. Selvakumar, R. Venkateswaran, A. Ashok, Rapid and efficient visible light photocatalytic dye degradation using AFe2O4 (A= Ba, Ca and Sr) complex oxides. Mater. Sci. Eng. B 210, 43–50 (2016)

    CAS  Google Scholar 

  45. A. Lassoued, M.S. Lassoued, B. Dkhil, S. Ammar, A. Gadri, Substituted effect of Al3+ on structural, optical, magnetic and photocatalytic activity of Ni ferrites. J. Magn. Magn. Mater. 476, 124–133 (2019)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. F. Mansour.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basfer, N.M., Mansour, S.F. & Al-Hazmi, F. Tailored dielectric, optical properties and photocatalytic performance of Mg–Zn nanoferrites by Cu2+ substitution. J Mater Sci: Mater Electron 31, 16160–16177 (2020). https://doi.org/10.1007/s10854-020-03972-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03972-w

Navigation