Skip to main content
Log in

Raspberry-like hollow SnO2-based nanostructures for sensing VOCs and ammonia

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The raspberry-like hollow SnO2-based (bare SnOand Pd-doped SnO2) nanostructures with different dominant crystal facets were prepared facilely using carbon nanospheres as templates via solvothermal method. Volatile organic compounds (VOCs) and ammonia (NH3) gas sensing performances of the hollow SnO2-based structures were studied systematically. The gas sensing performances were investigated in a temperature range of 150–315 °C. It was found that 285 °C was the optimum operating temperature for both the sensors. The SnO2 sensor showed excellent VOCs (1–100 ppm) sensing performances, with a fast response/recovery behavior (around 4 s/30 s) at 285 °C. While the Pd-SnO2 sensor displayed selective NH3 sensing characteristics at low concentrations of 1.5–12 ppm, interestingly, with a response/recovery time of about 4 s/80 s at 285 °C. Both the SnO2 and Pd-SnO2 sensors showed great repeatability for 8 response/recovery cycles, and very slight response recession for a long period. It was found that not only the morphology, the synergistic effect from the heterojunctions of doped Pd and SnO2, and the Pd catalysis, but also the crystal facets could modulate the sensing performance of metal oxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. T.T. Lin, X. Lv, Z.N. Hu, A.S. Xu, C.H. Feng, Sensors (2019). https://doi.org/10.3390/s19020233

    Article  Google Scholar 

  2. I.P. Liu, C.H. Chang, T.C. Chou, K.W. Lin, Sens. Actuator B 291, 148 (2019). https://doi.org/10.1016/j.snb.2019.04.046

    Article  CAS  Google Scholar 

  3. V.B. Raj, A.T. Nimal, Y. Parmar, M.U. Sharma, K. Sreenivas, V. Gupta, Sens. Actuator B 147, 517 (2010). https://doi.org/10.1016/j.snb.2010.03.079

    Article  CAS  Google Scholar 

  4. D.D. Nguyen, D.V. Dang, D.C. Nguyen, Adv. Nat. Sci. Nanosci Nanotechnol 6, 035006 (2015). https://doi.org/10.1088/2043-6262/6/3/035006

    Article  CAS  Google Scholar 

  5. J. Zhang, S.R. Wang, Y.M. Wang et al., Sens. Actuator B 135, 610 (2009). https://doi.org/10.1016/j.snb.2008.09.026

    Article  CAS  Google Scholar 

  6. P.M. Bulemo, H.J. Cho, D.H. Kim, I.D. Kim, ACS Appl Mater Interfaces 10, 18183 (2018). https://doi.org/10.1021/acsami.8b00901

    Article  CAS  Google Scholar 

  7. J.Y. Liu, T.S. Wang, B.Q. Wang et al., Sens. Actuator B 245, 551 (2017). https://doi.org/10.1016/j.snb.2017.01.148

    Article  CAS  Google Scholar 

  8. B.-Y. Kim, J.S. Cho, J.-W. Yoon et al., Sens. Actuators B 234, 353 (2016). https://doi.org/10.1016/j.snb.2016.05.002

    Article  CAS  Google Scholar 

  9. Z. Li, J.X. Yi, Sens. Actuator B 243, 96 (2017). https://doi.org/10.1016/j.snb.2016.11.136

    Article  CAS  Google Scholar 

  10. S.L. Bai, W.G. Tong, Y. Tian et al., J. Mater. Sci. 54, 2025 (2019). https://doi.org/10.1007/s10853-017-1588-2

    Article  CAS  Google Scholar 

  11. K. Suematsu, H. Uchino, T. Mizukami, K. Watanabe, K. Shimanoe, J. Mater. Sci. 54, 3135 (2019). https://doi.org/10.1007/s10853-018-3020-y

    Article  CAS  Google Scholar 

  12. L. Xiao, S.M. Shu, S.T. Liu, Sens. Actuator B 221, 120 (2015). https://doi.org/10.1016/j.snb.2015.06.099

    Article  CAS  Google Scholar 

  13. J. Rebholz, K. Grossmann, D. Pham et al., Sensors 16, 1437 (2016)

    Article  Google Scholar 

  14. K. Großmann, K.E. Kovács, D.K. Pham, L. Mädler, N. Barsan, U. Weimar, Sens. Actuators B 158, 388 (2011)

    Article  Google Scholar 

  15. L.P. Yang, X.Y. Zhou, L.F. Song et al., ACS Appl. Nano Mater. 1, 6327 (2018). https://doi.org/10.1021/acsanm.8b01529

    Article  CAS  Google Scholar 

  16. F. Gyger, A. Sackmann, M. Hübner et al., Part. Part. Syst. Charact. 31, 591 (2014). https://doi.org/10.1002/ppsc.201300241

    Article  CAS  Google Scholar 

  17. J.M. Walker, S.A. Akbar, P.A. Morris, Sens. Actuator B 286, 624 (2019). https://doi.org/10.1016/j.snb.2019.01.049

    Article  CAS  Google Scholar 

  18. D. Degler, U. Weimar, N. Barsan, ACS Sens. 4, 2228 (2019). https://doi.org/10.1021/acssensors.9b00975

    Article  CAS  Google Scholar 

  19. F. Shao, M.W.G. Hoffmann, J.D. Prades, J.R. Morante, N. Lopez, F. Hernandez-Ramirez, J. Phys. Chem. C 117, 3520 (2013). https://doi.org/10.1021/jp3085342

    Article  CAS  Google Scholar 

  20. B. Cho, J. Yoon, M.G. Hahm et al., J. Mater. Chem. C 2, 5280 (2014). https://doi.org/10.1039/c4tc00510d

    Article  CAS  Google Scholar 

  21. X. Han, M. Jin, S. Xie, Q. Kuang, L. Zheng, Angew Chem. Int. Ed. Engl. 48, 9180 (2009)

    Article  CAS  Google Scholar 

  22. X. Sun, Y. Li, Angew Chem. Int. Ed. Engl. 43, 597 (2004). https://doi.org/10.1002/anie.200352386

    Article  CAS  Google Scholar 

  23. T. Takeguchi, O. Takeoh, S. Aoyama, J. Ueda, R. Kikuchi, K. Eguchi, Appl. Catal. A 252, 205 (2003). https://doi.org/10.1016/S0926-860x(03)00418-6

    Article  CAS  Google Scholar 

  24. Y. Masayoshi, T. Masaki et al., Sens. Actuators B 136, 99 (2009)

    Article  Google Scholar 

  25. T.S. Wang, S.F. Zhang, Q. Yu et al., Sens. Actuator B 276, 262 (2018). https://doi.org/10.1016/j.snb.2018.07.020

    Article  CAS  Google Scholar 

  26. B.Y. Huang, Z.X. Zhang, C.H. Zhao et al., Sens. Actuator B 255, 2248 (2018). https://doi.org/10.1016/j.snb.2017.09.022

    Article  CAS  Google Scholar 

  27. L.L. Guo, F. Chen, N. Xie et al., Sens. Actuator B 272, 185 (2018). https://doi.org/10.1016/j.snb.2018.05.161

    Article  CAS  Google Scholar 

  28. P. Sun, W. Wang, Y. Liu, Y. Sun, J. Ma, G. Lu, Sens. Actuators B 173, 52 (2012)

    Article  CAS  Google Scholar 

  29. G.H. Mhlongo, D.E. Motaung, F.R. Cummings, H.C. Swart, S.S. Ray, Sci. Rep. 9, 9881 (2019). https://doi.org/10.1038/s41598-019-46247-z

    Article  CAS  Google Scholar 

  30. P.G. Su, L.Y. Yang, Sens. Actuator B 223, 202 (2016). https://doi.org/10.1016/j.snb.2015.09.091

    Article  CAS  Google Scholar 

  31. M. Shahabuddin, A. Sharma, J. Kumar, M. Tomar, A. Umar, V. Gupta, Sens. Actuator B 194, 410 (2014). https://doi.org/10.1016/j.snb.2013.12.097

    Article  CAS  Google Scholar 

  32. N. Van Toan, C.M. Hung, N. Van Duy, N.D. Hoa, D.T.T. Le, N. Van Hieu, Mater. Sci. Eng. B 224, 163 (2017). https://doi.org/10.1016/j.mseb.2017.08.004

    Article  CAS  Google Scholar 

  33. Y. Li, H.T. Ban, M.J. Yang, Sens. Actuator B 224, 449 (2016). https://doi.org/10.1016/j.snb.2015.10.078

    Article  CAS  Google Scholar 

  34. S.G. Leonardi, W. Wlodarski, Y.X. Li, N. Donato, A. Bonavita, G. Neri, J. Alloy Compd. 781, 440 (2019). https://doi.org/10.1016/j.jallcom.2018.12.110

    Article  CAS  Google Scholar 

  35. A.M. Al-Enizi, M. Naushad, A.H. Al-Muhtaseb et al., Chem. Eng. J. 345, 58 (2018). https://doi.org/10.1016/j.cej.2018.03.138

    Article  CAS  Google Scholar 

  36. A. Rothschild, Y. Komem, Sens. Actuator B 93, 362 (2003). https://doi.org/10.1016/S0925-4005(03)00212-0

    Article  CAS  Google Scholar 

  37. D. Koziej, M. Hubner, N. Barsan, U. Weimar, M. Sikora, J.D. Grunwaldt, Phys. Chem. Chem. Phys. 11, 8620 (2009). https://doi.org/10.1039/b906829e

    Article  CAS  Google Scholar 

  38. Y.H. Zhang, Y.L. Li, F.L. Gong, K.F. Xie, H.L. Zhang, S.M. Fang, Phys. Chem. Chem. Phys. 21, 22039 (2019). https://doi.org/10.1039/c9cp04242c

    Article  CAS  Google Scholar 

  39. D.P. Xue, P.T. Wang, Z.Y. Zhang, Y. Wang, Sens. Actuator B 296, 126710 (2019). https://doi.org/10.1016/j.snb.2019.126710

    Article  CAS  Google Scholar 

  40. P. Bechthold, M.E. Pronsato, C. Pistonesi, Appl. Surf. Sci. 347, 291 (2015). https://doi.org/10.1016/j.apsusc.2015.03.149

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge M. L. for help with the TEM, XRD, and XPS characterizations. The authors W. Y., H. Z, and C. G. acknowledge the 2011 Zhejiang Regional Collaborative Innovation Center for Smart City.

Funding

This research was supported by the Zhejiang Science and Technology Foundation (LQ20F040006), 2011 Zhejiang Regional Collaborative Innovation Center for Smart City, and Research Foundation of Hangzhou Dianzi University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenjun Yan, Houpan Zhou or Chunwei Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1105 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, W., Zeng, X., Wu, G. et al. Raspberry-like hollow SnO2-based nanostructures for sensing VOCs and ammonia. J Mater Sci: Mater Electron 31, 14165–14173 (2020). https://doi.org/10.1007/s10854-020-03971-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03971-x

Navigation