Skip to main content
Log in

Conductive 3D printing: resistivity dependence upon infill pattern and application to EMI shielding

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Polymers filled with conductive carbon black allow for the 3D printing of electrically conductive samples. The resistivity of these 3D printed samples depends on both the microscopic parameters of the carbon black filler and also on the macroscopic arrangement of the extrudites that build up the 3D printed sample. To investigate this dependence, we characterize the resistivity of five different printing infill patterns and find that a cross-ply pattern, which has extrudites oriented both in the direction of current flow and perpendicular to the direction of current flow has a lower resistivity of \(0.229\,\Omega {\text{m}}\) than the resistivity of \(0.458\,\Omega {\text{m}}\) found for a uni-ply pattern with all extrudites oriented in the direction of current flow. A Monte Carlo simulation of a large network of variable resistors illustrates the feasibility that the lower resistivity of the cross-ply pattern is caused by cross-flow which diverts current around areas of high local resistance. The same type of 3D printed conductive samples are tested as electromagnetic shields at frequencies up to 3.0 GHz using a custom-designed flanged coaxial sample holder. The shielding effectiveness of three sample infill patterns and four sample infill densities is compared. Cross-ply and angle-ply samples show the most efficient shielding effectiveness (normalized to sample density) of \(17.5\,{\text{dB}}/{\text{g}}\,{\text{cm}}^{3}\) at an infill density of 50% and would be the infill pattern of choice in an application constrained by weight or material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Proto-Pasta, Electrically conductive composite PLA, https://www.proto-pasta.com/products/conductive-pla?variant=1265211476. Accessed 15 July 2020

  2. Amolen, 3d printer filament, conductive black PLA filament, https://amolen.com/products/amolen-3d-printer-filament-conductive-black-pla-filament-500g1-1lb. Accessed 15 July 2020

  3. S.J. Leigh, R.J. Bradley, C.P. Purssell, D.R. Billson, D.A. Hutchins, PLoS ONE 7(11), e49365 (2012). https://doi.org/10.1371/journal.pone.0049365

    Article  CAS  Google Scholar 

  4. Z. Manzoor, M.T. Ghasr, K.M. Donnell, in 2018 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) (2018). https://doi.org/10.1109/i2mtc.2018.8409627

  5. K. Chizari, M. Arjmand, Z. Liu, U. Sundararaj, D. Therriault, Mater. Today Commun. 11, 112 (2017). https://doi.org/10.1016/j.mtcomm.2017.02.006

    Article  CAS  Google Scholar 

  6. S. Dul, L. Fambri, A. Pegoretti, Nanomaterials 8(1), 49 (2018). https://doi.org/10.3390/nano8010049

    Article  CAS  Google Scholar 

  7. W. Zhang, A.A. Dehghani-Sanij, R.S. Blackburn, J. Mater. Sci. 42(10), 3408 (2007). https://doi.org/10.1007/s10853-007-1688-5

    Article  CAS  Google Scholar 

  8. M. Narkis, A. Vaxman, J. Appl. Polym. Sci. 29(5), 1639 (1984). https://doi.org/10.1002/app.1984.070290518

    Article  CAS  Google Scholar 

  9. H. Watschke, K. Hilbig, T. Vietor, Appl. Sci. 9(4), 779 (2019). https://doi.org/10.3390/app9040779

    Article  CAS  Google Scholar 

  10. H.L. Tekinalp, V. Kunc, G.M. Velez-Garcia, C.E. Duty, L.J. Love, A.K. Naskar, C.A. Blue, S. Ozcan, Compos. Sci. Technol. 105, 144 (2014). https://doi.org/10.1016/j.compscitech.2014.10.009

  11. H.H. Bin-Hamzah, O. Keattch, D. Covill, B.A. Patel, Sci. Rep. 8, 1 (2018). https://doi.org/10.1038/s41598-018-27188-5

    Article  CAS  Google Scholar 

  12. J. Zhang, B. Yang, F. Fu, F. You, X. Dong, M. Dai, Appl. Sci. 7(1), 20 (2017). https://doi.org/10.3390/app7010020

    Article  CAS  Google Scholar 

  13. Proto-pasta, Cdp1xxxx safety data sheet, https://cdn.shopify.com/s/files/1/0717/9095/files/CDP1xxxx_SDS.pdf?1992606272897634343. Accessed 15 July 2020

  14. J. Rommes, W.H.A. Schilders, IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 29(1), 28 (2010). https://doi.org/10.1109/tcad.2009.2034402

    Article  Google Scholar 

  15. R. Valente, C. De Ruijter, D. Vlasveld, S. Van Der Zwaag, P. Groen, IEEE Access 5, 16665 (2017). https://doi.org/10.1109/access.2017.2741527

    Article  Google Scholar 

  16. C. Holloway, M. Sarto, M. Johansson, IEEE Trans. Electromagn. Compat. 47(4), 833 (2005). https://doi.org/10.1109/temc.2005.854101

    Article  Google Scholar 

  17. E. Huber, M. Mirzaee, J. Bjorgaard, M. Hoyack, S. Noghanian, I. Chang, in 2016 IEEE International Conference on Electro Information Technology (EIT) (2016). https://doi.org/10.1109/eit.2016.7535340

  18. A.J. McDowell, T. Hubing, Decomposition of Shielding Effectiveness into Absorption and Reflection Components. Technical Report (Clemson University, Clemson, 2016)

    Google Scholar 

  19. D. Schmitz, L. Ecco, S. Dul, E. Pereira, B. Soares, G. Barra, A. Pegoretti, Mater. Today Commun. 15, 70 (2018). https://doi.org/10.1016/j.mtcomm.2018.02.034

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Minnesota Supercomputing Institute (MSI) at the University of Minnesota for providing resources that contributed to the research results reported within this paper. http://www.msi.umn.edu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucas J. Koerner.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Truman, L., Whitwam, E., Nelson-Cheeseman, B.B. et al. Conductive 3D printing: resistivity dependence upon infill pattern and application to EMI shielding. J Mater Sci: Mater Electron 31, 14108–14117 (2020). https://doi.org/10.1007/s10854-020-03965-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03965-9

Navigation