Skip to main content

Advertisement

Log in

Properties of borosilicate glass/Al2O3 composites with different Al2O3 concentrations for LTCC applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This article aims to investigate the effect of Al2O3 in borosilicate glass on the sintering densification and properties of the borosilicate glass/Al2O3 LTCC composites. A series of CaO–Al2O3–B2O3–SiO2 (CABS) glass with different concentrations of Al2O3 was synthesized, as well as the CABS glass/Al2O3 LTCC composites. The influence of Al2O3 on the sintering densification, phase composition, microstructures and properties of the CABS glass/Al2O3 LTCC composites was then systematically investigated. Result indicates that a proper amount of Al2O3 in CABS glass not only can strengthen the structural stability of the borosilicate glass, but also can promote the sintering densification and improve the properties of the glass/ceramic composites. CABS glass/Al2O3 composites prepared with CABS glass of 4 wt.% Al2O3 sintered at 875 °C exhibits excellent properties of a sintering density of 3.13 g/cm3, a Z axial shrinkage of 15.5%, a dielectric constant (εr) of 8.08, a dielectric loss (tanδ) of 0.9 × 10–3 (at 7 GHz), a coefficient of thermal expansion (CTE) of 5.35 ppm/°C, a flexural strength of 206 MPa, demonstrating its great potential for LTCC applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. R.R. Tummala, Ceramic and glass-ceramic packaging in the 1990s. J. Am. Ceram. Soc. 74(5), 895–908 (1990s)

    Article  CAS  Google Scholar 

  2. S. Arcaro, T.B. Wermuth, R.Y.S. Zampiva, Li2O–ZrO2–SiO2/Al2O3 nanostructured composites for microelectronics applications. J. Eur. Ceram. Soc. 39(2–3), 491–498 (2019)

    Article  CAS  Google Scholar 

  3. C.C. Cheng, T.E. Hsieh, I.N. Lin, Microwave dielectric properties of glass-ceramic composites for low temperature co-firable ceramics. J. Eur. Ceram. Soc. 23(14), 2553–2558 (2003)

    Article  CAS  Google Scholar 

  4. Y. Imanaka, Multilayered low temperature cofired ceramics (LTCC) technology (Springer, New York, 2005)

    Google Scholar 

  5. M.T. Sebastian, H. Jantunen, low loss dielectric materials for LTCC applications: a review. Int. Mater. Rev. 53(2), 57–90 (2008)

    Article  CAS  Google Scholar 

  6. M.T. Sebastian, H. Huang, H. Jantunen, Low temperature co-fired ceramics for LTCC application: a review. Curr. Opin. Solid. State. Mater. Sci. 20(3), 151–170 (2016)

    Article  CAS  Google Scholar 

  7. X.Y. Chen, W.J. Zhang, S.X. Bai, Y.G. Du, Densification and characterization of SiO2–B2O3–CaO–MgO glass/Al2O3 composites for LTCC application. Ceram. Int. 39(6), 6355–6361 (2013)

    Article  CAS  Google Scholar 

  8. A.A. El-Kheshen, Effect of alumina addition on properties of glass/ceramic composite. Brit. Ceram. T. 102(5), 205–209 (2003)

    CAS  Google Scholar 

  9. H.K. Zhu, H.Q. Zhou, M. Liu, P.F. Wei, G. Nin, Low temperature sintering and properties of CaO–B2O3–SiO2 system glass ceramics for LTCC applications. J. Alloys. Comp. 482(1–2), 272–275 (2009)

    Article  CAS  Google Scholar 

  10. G.H. Chen, X.Y. Liu, Sintering, crystallization and properties of MgO–Al2O3–SiO2 system glass–ceramics containing ZnO. J. Alloys. Comp. 431, 282–286 (2007)

    Article  CAS  Google Scholar 

  11. M. Ozabaci, M.A. Aksan, G. Kirat, O. Kizilaslan, M.E. Yakincic, Preparation and characterization of CaO–Al2O3–SiO2 (CAS) glass–ceramics. J. Non-Cryst. Solids. 454, 8–12 (2016)

    Article  CAS  Google Scholar 

  12. A.Q. Wei, Z.F. Liu, F.Q. Zhang, M.S. Ma, G.Y. Chen, Y.X. Li, Thermal expansion coefficient tailoring of LAS glass–ceramic for anodic bondable low temperature co-fired ceramic application. Ceram. Int. 46(4), 4771–4777 (2020)

    Article  CAS  Google Scholar 

  13. M.S. Ma, Z.Q. Fu, Z.F. Liu, Y.X. Li, Fabrication and microwave dielectric properties of CuO–B2O3–Li2O glass–ceramic with ultra-low sintering temperature. Ceram. Int. 43(Supplement 1), S292–S295 (2017)

    Article  CAS  Google Scholar 

  14. R. Wang, J. Zhou, B. Li, L.T. Li, CaF2–AlF3–SiO2 glass-ceramic with low dielectric constant for LTCC application. J. Alloys. Comp. 490(1–2), 204–207 (2010)

    Article  CAS  Google Scholar 

  15. H.S. Ren, M.Z. Dang, H.J. Wang, T.Y. Xie, S.H. Jiang, H.X. Lin, L. Luo, Sintering behavior and microwave dielectric properties of B2O3–La2O3–MgO–TiO2 based glass-ceramic for LTCC applications. Mater. Lett. 210, 113–116 (2018)

    Article  CAS  Google Scholar 

  16. D.H. Jiang, J.J. Chen, B.B. Lu, J. Xi, F. Shang, J.W. Xu, G.H. Chen, Preparation, crystallization kinetics and microwave dielectric properties of CaO–ZnO–B2O3–P2O5–TiO2 glass-ceramics. Ceram. Int. 45(7), 8233–8237 (2019)

    Article  CAS  Google Scholar 

  17. Q. Xia, C.W. Zhong, J. Luo, Low temperature sintering and characteristics of K2O–B2O3–SiO2–Al2O3, glass/ceramic composites for LTCC applications. J. Mater. Sci. Mater. Electron. 25(10), 4187–4192 (2014)

    Article  CAS  Google Scholar 

  18. E.M. Hamzawy, A.A. El-Kheshen, M.F. Zawrah, Densification and properties of glass/cordierite composites. Ceram. Int. 31(3), 383–389 (2005)

    Article  CAS  Google Scholar 

  19. S. Arcaro, F.R. Cesconeto, F. Raupp-Pereira, A.P. Novaes de Oliveira, Synthesis and characterization of LZS/α–Al2O3 glass–ceramic composites for applications in the LTCC technology. Ceram. Int. 40, 5269–5274 (2014)

    Article  CAS  Google Scholar 

  20. L.N. Yuan, B. Liu, N.N. Shen, Synthesis and properties of borosilicate/AlN composite for low temperature co-fired ceramics application. J. Alloys. Comp. 593, 34–40 (2014)

    Article  CAS  Google Scholar 

  21. M.Y. Chen, J. Uuti, C.S. His, Dielectric properties of ultra-low sintering temperature Al2O3–BBSZ glass composite. J. Am. Ceram. Soc. 98(4), 1133–1136 (2015)

    Article  CAS  Google Scholar 

  22. L.C. Ren, X.F. Luo, H.Q. Zhou et al., Synthesis and characterization of LTCC compositions with middle permittivity based on CaO–B2O3–SiO2 glass/CaTiO3 system. J. Eur. Ceram. Soc. 37(2), 619–623 (2017)

    Article  CAS  Google Scholar 

  23. A.A. El-Kheshen, M.F. Zawrah, Sinterability, microstructure and properties of glass/ceramic composites. Ceram. Int. 29, 251–257 (2003)

    Article  CAS  Google Scholar 

  24. D.P. Mukherjee, S.K. Das, Synthesis and characterization of machinable glass-ceramics added with B2O3. Ceram. Int. 40(8), 12459–12470 (2014)

    Article  CAS  Google Scholar 

  25. L.C. Ren, H.Q. Zhou, X. Li, Synthesis and characteristics of borosilicate-based glass-ceramics with different SiO2 and Na2O contents. J. Alloys. Comp. 646, 780–786 (2015)

    Article  CAS  Google Scholar 

  26. X.F. Luo, L.C. Ren, W.T. Xie, Microstructure, sintering and properties of CaO–Al2O3–B2O3–SiO2 glass/Al2O3 composites with different CaO contents. J. Mater. Sci. Mater. Electron. 27(5), 5446–5451 (2016)

    Article  CAS  Google Scholar 

  27. Y.N. Lin, M.M. Smedskjaer, J.C. Mauro, Structure, properties, and fabrication of calcium aluminate-based glasses. Int. J. Appl. Glas. 10(4), 488–501 (2019)

    Article  CAS  Google Scholar 

  28. W.H. Zachariasen, The atomic arrangement in glass. J. Am. Chem. Soc. 54(10), 3841–3851 (1932)

    Article  CAS  Google Scholar 

  29. B.E. Warren, X-ray determination of the structure of glass. J. Am. Ceram. Soc. 17(1–12), 249–254 (1934)

    Article  CAS  Google Scholar 

  30. Y.Z. Zhao, H.R. Yin, Glass technology (China chemistry industry press, Beijing, 2006)

    Google Scholar 

  31. C.Y. Wang, Y. Tao, Glass composition design and adjustment (China chemistry industry press, Beijing, 2006)

    Google Scholar 

  32. Z. Wang, Y. Hu, H. Lu et al., Study on the gel casting of fused silica glass. J. Non-Cryst. Solids. 354(12–13), 1285–1289 (2008)

    Google Scholar 

  33. R.M. German, P. Suri, S.J. Park, Review: liquid phase sintering. J. Mater. Sci. 44, 1–39 (2009)

    Article  CAS  Google Scholar 

  34. M.F. Zawrah, E.M.A. Hamzawy, Effect of cristobalite formation on sinterability, microstructure and properties of glass/ceramic composites. Ceram. Int. 28(2), 123–130 (2002)

    Article  CAS  Google Scholar 

  35. X.F. Luo, L.C. Ren, Y.S. Xia, Microstructure, sinterability and properties of CaO–B2O3–SiO2 glass/Al2O3 composites for LTCC application. Ceram. Int. 43(9), 6791–6795 (2017)

    Article  CAS  Google Scholar 

  36. X.M. Cui, J. Zhou, A simple and an effective method for the fabrication of densified glass–ceramics of low temperature co-fired ceramics. Mater. Res. Bull. 43(6), 1590–1597 (2008)

    Article  CAS  Google Scholar 

  37. C.L. Lo, J.G. Duh, B.S. Chiou et al., Low-temperature sintering and microwave dielectric properties of anorthite-based glass–ceramics. J. Am. Ceram. Soc. 85(9), 2230–2235 (2002)

    Article  CAS  Google Scholar 

  38. I.J. Induja, K.P. Surendran, M.R. Varma, M.T. Sebastian, Low k, low loss alumina-glass composite with low CTE for LTCC microelectronic applications. Ceram. Int. 43(1), 746–740 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the support of the Priority Academic Program Development of Jiangsu Higher Education Institution (PAPD), Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, and the Program for Innovative Research Team in University of Ministry of Education of China (No. IRT_15R35).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongqing Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, X., Tao, H., Li, P. et al. Properties of borosilicate glass/Al2O3 composites with different Al2O3 concentrations for LTCC applications. J Mater Sci: Mater Electron 31, 14069–14077 (2020). https://doi.org/10.1007/s10854-020-03961-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03961-z

Navigation