Consequence of B-site substitution of rare earth (Gd+3) on electrical properties of manganese ferrite nanoparticles

Abstract

Rare-earth-doped ferrite nanomaterials are known to show remarkable variation in structural, magnetic, and electrical behavior compared to their un-doped counterparts. In this report, low-temperature synthesis of Gd+3-doped manganese ferrite with composition MnFe2−xGdxO4 (x = 0.02, 0.04, 0.06, 0.08) has been represented. This report includes structural investigations done using X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) and morphological analysis done through scanning electron microscopy (SEM). The compositional analysis was done through energy dispersive X-ray spectroscopy EDS. The variation of electrical properties like DC resistivity ‘ρ’, mobility ‘μ’, and dielectric constant ‘ε’ as a function of temperature was also investigated and was seen to depend on rare earth concentration in the ferrite structure.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    V. JagadeeshAngadi, B. Rudraswamy, K. Sadhana, K. Praveena, Structural and magnetic properties of manganese zinc ferrite nanoparticles prepared by solution combustion method using mixture of fuels. J. Magn. Magn. Mater. 409, 111–115 (2016)

    Article  Google Scholar 

  2. 2.

    P.P. Naika, S.S. Hasolkar, M.M. Kothawale, S.H.P. Keluskar, Altering saturation magnetization of manganese zinc ferrite nanoparticles by doping with rare earth Nd+3 ions. Phys. B 584, 412111 (2020)

    Article  Google Scholar 

  3. 3.

    S.S. Hasolkar, P.P. Naik, Effect of Gd+3 doping on structural, magnetic and electrical properties of Mn0.5Co0.5Fe2-xGdxO4 nano-particles prepared using combustion synthesis. J. Alloys Compd. 823, 153605 (2020)

    CAS  Article  Google Scholar 

  4. 4.

    K. Praveen, H.-W. Chen, H.-L. Liu, K. Sadhana, S.R. Murthy, Enhanced magnetic domain relaxation frequency and low power losses in Zn2+ substituted manganese ferrites potential for high-frequency applications. J. Magn. Magn. Mater. 420, 129–142 (2019)

    Article  Google Scholar 

  5. 5.

    P.P. Naik, R.B. Tangsali, Enduring effect of rare earth (Nd3+) doping, and γ- radiation on electrical properties of nanoparticle manganese zinc ferrite. J. Alloys Compd. 723, 266–275 (2017)

    CAS  Article  Google Scholar 

  6. 6.

    N. Heydari, M. Kheirmand, H. Heli, A nanocomposite of CoFe2O4-carbon microspheres for electrochemical energy storage applications. Int. J. Green Energy 16(6), 476–482 (2019)

    CAS  Article  Google Scholar 

  7. 7.

    N. Joshi, L.F. de Silva, H. Jadhav, J.-C. M’Peko, B.B. MillanTorres, K. Aguir, V.R. Mastelaro, O.N. Oliveira Jr., One-step approach for preparing ozone gas sensors based on hierarchical NiCo2O4 structures. R. Soc. Chem. Adv. 6, 92655–92662 (2016)

    CAS  Google Scholar 

  8. 8.

    N. Joshi, L.F. da Silva, H.S. Jadhav, F.M. Shimizu, P.H. Suman, J.-C. M’Peko, M.O. Orlandi, J.G. Seo, V.R. Mastelaro, O.N. Oliveir Jr., Yolk-shelled ZnCo2O4 microspheres: surface properties and gas sensing application. Sens. Actuators B 257, 906–915 (2018)

    CAS  Article  Google Scholar 

  9. 9.

    M.A. Ait Kerroum, A. Essyed, C. Iacovita, W. Baaziz, D. Ihiawakrim, O. Mounkachi, M. Hamedoun, A. Benyoussef, M. Benaissa, O. Ersen, The effect of basic pH on the elaboration of ZnFe2O4 nanoparticles by co-precipitation method: structural, magnetic and hyperthermia characterization. J. Magn. Magn. Mater. 478, 239–246 (2019)

    CAS  Article  Google Scholar 

  10. 10.

    P.P. Naik, R.B. Tangsali, S.S. Meena, Influence of rare earth (Nd+3) doping on structural and magnetic properties of nanocrystalline manganese-zinc ferrite. Mater. Chem. Phys. 191, 215–224 (2017)

    CAS  Article  Google Scholar 

  11. 11.

    P.P. Naik, R.B. Tangsali, B. Sonaye, S.S. Sugar, Gamma radiation stimulated unwavering structural and magnetic refinements in MnxZn1-xFe2O4 nanoparticles. Adv. Sci. Lett. 22, 752–758 (2016)

    Article  Google Scholar 

  12. 12.

    M. DeepakKumara, A. Dsouzaa, M. Chatima, V. Naik, P.P. Naik, R.B. Tangsali, Effect of rare-earth doping on magnetic and electrical transport properties of nanoparticle Mn Zn ferrite. Adv. Sci. Lett. 22, 773–779 (2016)

    Article  Google Scholar 

  13. 13.

    N. Tendulkar, S. Patil, V. Kuncalienkar, P.P. Naik, M. Kundaikar, S. Keluskar, Study of structural and magnetic properties of Mn08Zn0.2Fe2O4 nanoparticles. Adv. Eng. Technol. Appl. 5(1), 19–22 (2016)

    Google Scholar 

  14. 14.

    G.V.S. Kundaikar, R.B. Tangsali, V.J. Pissurlekar, J.S. Budkuley, P.P. Naik, Synthesis of uniform size superparamagnetic grains of MnxZn(1–x)Fe2O4 ferrites by precursor-based combustion method. J. Supercond. Nov. Magn. 29, 789–794 (2016)

    CAS  Article  Google Scholar 

  15. 15.

    P.P. Naik, R.B. Tangsali, Consequence of rare earth doping on structural and magnetic properties of Mn0.6Zn0.4NdxFe2-xO4, in Nnanoparticles, advanced nanomaterials: synthesis and applications (Academic reference series), ed. by V. Rajendran, K. Saminathan, K.E. Geckeler (Goa University, Taleigao, 2015), pp. 103–106. ISBN:978-93-85436-74-1

    Google Scholar 

  16. 16.

    P.P. Naik, R.B. Tangsali, B. Sonaye, S. Sugur, J. Nano, Sustained Augmentation in electrical properties of MnxZn1-xFe2O4 nanoparticle s provoked by High Energy Gamma Radiation. Adv. Mat. 3(1), 1–7 (2015)

    Google Scholar 

  17. 17.

    P.P. Naik, R.B. Tangsali, B. Sonaye, S. Sugar, Radiation induced structural and magnetic transformations in nano-particle MnxZn(1–x)Fe2O4 ferrites. J. Magn. Magn. Mater. 385, 377–385 (2015)

    CAS  Article  Google Scholar 

  18. 18.

    P.P. Naik, R.B. Tangsali, B. Sonaye, S. Sugur, Gamma radiation roused lattice contraction effects investigated by Mössbauer spectroscopy in nanoparticle Mn-Zn Ferrite. Radiat. Phys. Chem. 102, 147–152 (2014)

    CAS  Article  Google Scholar 

  19. 19.

    P.P. Naik, R.B. Tangsali, S.S. Meena, P. Bhatt, B. Sonaye, S. Sugur, Radiation stimulated permanent alterations in structural and electrical properties of core-shell Mn-Zn ferrite nanoparticles. J. Nano Res. 24, 194–202 (2013)

    Article  Google Scholar 

  20. 20.

    P.P. Naik, R.B. Tangsali, B. Sonaye, S. Sugur, Enrichment of magnetic alignment stimulated by γ-radiation in core-shell type nanoparticle Mn-Zn ferrite. AIP Conf. Proc. 1512, 354 (2013). https://doi.org/10.1063/1.4791057

    CAS  Article  Google Scholar 

  21. 21.

    S.H.P. Keluskar, P.P. Naik, S.S. Hasolkar, Effect of sintering on structural and morphological properties of nanoparticle manganese zinc ferrite synthesized using combustion method. Int. J. Nano Mater. Chem. 5(3), 37–40 (2019)

    Google Scholar 

  22. 22.

    C. Venkataraju, Effect of nickel on the structural properties of Mn Zn ferrite nanoparticles. Appl. Phys. Res. 1, 41–45 (2009)

    CAS  Article  Google Scholar 

  23. 23.

    M.M. Haque, M. Huq, M.A. Hakim, Effect of Cu for Mn on the magnetic properties of Mn-Zn ferrites. Indian J. Phys. 78A(3), 397–400 (2004)

    CAS  Google Scholar 

  24. 24.

    E.M.M. Ewais, M.M. Hessien, A.-H.A. El-Geassy, In-situ synthesis of magnetic Mn-Zn ferrite ceramic object by solid state reaction. J. Aust. Ceram. Soc. 44(1), 57–62 (2008)

    CAS  Google Scholar 

  25. 25.

    K. RamaKrishna, K. VijayaKumar, D. Ravinder, Structural and electrical conductivity studies in nickel-zinc ferrite. Adv. Mater. Phys. Chem. 2, 185–191 (2012)

    Google Scholar 

  26. 26.

    M.F. Sarac, Magnetic, structural, and optical properties of gadolinium-substituted Co0.5Ni05Fe2O4 spinel ferrite nanostructures. J. Supercond. Novel Magn. (2019). https://doi.org/10.1007/s10948-019-05359-3

    Article  Google Scholar 

  27. 27.

    C. Murugesan, G. Chandrasekaran, Impact of Gd3+ substitution on the structural, magnetic and electrical properties of cobalt ferrite nanoparticles. RSC Adv. 5, 73714–73725 (2015)

    CAS  Article  Google Scholar 

  28. 28.

    J.G. Kang, B.K. Min, Y. Sohn, Synthesis and characterization of Gd(OH)3 and Gd2O3 nanorods. Ceram. Int. 41, 1243–1248 (2015)

    CAS  Article  Google Scholar 

  29. 29.

    M.T. Farid, I. Ahmad, S. Aman, M. Kanwal, G. Murtaza, I. Ali, I. Ahmad, M. Iashfaq, Structural, electrical and dielectric behavior of NixCo1-xNdyFe2-yO4 nano ferrites synthesized by sol-gel method. Dig. J. Nanomater. Biostruct. 10(1), 265–275 (2015)

    Google Scholar 

  30. 30.

    G. Kumar, J. Shah, R.K. Kotnala, P. Dhiman, R. Rani, V.P. Singh, G. Garg, S.E. Shirsath, K.M. Batoo, M. Singh, Self-ignited synthesis of Mg–Gd–Mn nano ferrites and impact of cation distribution on the dielectric properties. Ceram. Int. 40(9), 14509–14516 (2014)

    CAS  Article  Google Scholar 

  31. 31.

    K.W. Wagner, Dissipation of energy under AC. Am. Phys. 40, 317 (1973)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Pranav P. Naik.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Naik, P.P., Hasolkar, S.S. Consequence of B-site substitution of rare earth (Gd+3) on electrical properties of manganese ferrite nanoparticles. J Mater Sci: Mater Electron 31, 13434–13446 (2020). https://doi.org/10.1007/s10854-020-03897-4

Download citation