Skip to main content

Advertisement

Log in

High breakdown strength and energy storage density of Er0.02Sr0.97TiO3@MgO2–Al2O3–SiO2 ceramics with core–shell structure sintered in oxygen atmosphere

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Effects of different sintering atmospheres (O2 and air) on the energy storage properties and dielectric characteristics were systematically investigated for 2MgO–2Al2O3–5SiO2 (MAS)-coated Er0.02Sr0.97TiO3 (EST) ceramics. The core–shell structure was formed by the sol-precipitation method. The ceramic sintered in O2 features fine grain, excellent frequency stability, low leakage current, high dielectric breakdown strength (BDS), and high energy storage density (Wreco). Compared with air-sintered ceramics, the dielectric DC breakdown strength of ceramic sintered in oxygen atmosphere has been enhanced significantly from 375 to 590 kV/cm. Besides, the maximum Wreco of 2.01 J/cm3 and efficiency of 86.2% were obtained at 460 kV/cm, which demonstrated that the core–shell structure and atmosphere sintering provide an instructive strategy for the design of high energy storage materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Z.H. Yao, Z. Song, H. Hao, Z.Y. Yu, M. Cao, S. Zhang, M.T. Lanagan, H.X. Liu, Adv. Mater. 29, 1601727 (2017)

    Article  Google Scholar 

  2. V.S. Puli, D.K. Pradhan, D.B. Chrisey, M. Tomozawa, J. Mater. Sci. 48, 2151 (2013)

    Article  CAS  Google Scholar 

  3. H.B. Yang, F. Yan, Y. Lin, T. Wang, ACS Sustain. Chem. Eng. 5, 10215 (2017)

    Article  CAS  Google Scholar 

  4. M.H. Park, H.J. Kim, Y.J. Kim, T. Moon, K.D. Kim, C.S. Hwang, Adv. Energy Mater. 16, 1400610 (2014)

    Article  Google Scholar 

  5. D.E. Grupp, A.M. Goldman, Science 18, 276 (1997)

    Google Scholar 

  6. N. Wang, H.J. Chen, H.C. He, W. Norimatsu, M. Kusunoki, K. Koumoto, Sci. Rep. 3, 3449 (2013)

    Article  Google Scholar 

  7. T.K. Townsend, N.D. Browning, ACS Nano 6, 7420 (2012)

    Article  CAS  Google Scholar 

  8. D.L. He, Y. Wang, X.Q. Chen, Y. Deng, Compos. Part A Appl. Sci. Manuf. 93, 137 (2017)

    Article  CAS  Google Scholar 

  9. X.D. Huang, H.X. Liu, S.J. Zhang, G.Y. Li, H. Hao, M.H. Cao, Z.H. Yao, J. Xie, J. Mater. Sci. Mater. Electron. 29, 11546 (2018)

    Article  CAS  Google Scholar 

  10. Z.C. He, M.H. Cao, L. Zhou, L. Zhang, J. Xie, S.J. Zhang, J.L. Qi, H. Hao, Z.H. Yao, Z.Y. Yu, H.X. Liu, J. Am. Ceram. Soc. 101, 5089 (2018)

    Article  CAS  Google Scholar 

  11. Z.C. He, M.H. Cao, Y. Tao, Y.Y. Suo, Q. Luo, H. Hao, Z.H. Yao, Z.Y. Yu, H.X. Liu, J. Phys. Chem. C 123, 18142 (2019)

    Article  CAS  Google Scholar 

  12. D. Zhang, T.W. Button, V.O. Sherman, A.K. Tagantsev, T. Price, D. Iddles, J. Eur. Ceram. Soc. 30, 407 (2010)

    Article  CAS  Google Scholar 

  13. T. Takada, S.F. Wang, S. Yoshikawa, S.J. Jang, R.E. Newnham, J. Am. Ceram. Soc. 77, 2485 (1994)

    Article  CAS  Google Scholar 

  14. K. Chen, Y.P. Pu, N. Xu, X. Luo, J. Mater. Sci. Mater. Electron. 23, 1599 (2012)

    Article  CAS  Google Scholar 

  15. K.C. Li, H. Wang, H.F. Zhou, M.H. Zhang, X. Yao, Int. J. Appl. Ceram. Technol. 7, E144 (2010)

    Article  Google Scholar 

  16. E.P. Gorzkowski, M.J. Pan, B. Bender, C.C.M. Wu, J. Electroceram. 18, 269 (2007)

    Article  CAS  Google Scholar 

  17. J.J. Shyu, J.R. Wang, J. Am. Ceram. Soc. 83, 3135 (2000)

    Article  CAS  Google Scholar 

  18. Y.C. Zhang, X.H. Wang, J.Y. Kim, Z.B. Tian, J. Fang, K.H. Hur, L. Li, J. Am. Ceram. Soc. 95, 1628 (2012)

    Article  CAS  Google Scholar 

  19. M. Rong, C. Bin, Y.J. Wang, S.Y. Wang, Y.Y. Wang, Mater. Res. Bull. 111, 311 (2019)

    Article  Google Scholar 

  20. F.Z. Zeng, M.H. Cao, L. Zhang, M. Liu, H. Hao, Z.H. Yao, H.X. Liu, Ceram. Int. 43, 7710 (2017)

    Article  CAS  Google Scholar 

  21. B. Johar, H. Mohamad, Z.A. Ahmad, Int. J. Appl. Ceram. Technol. 8, 637 (2011)

    Article  Google Scholar 

  22. A. Benhammou, Y.E. Hafiane, L. Nibou, A. Yaacoubi, J. Soro, A. Smith, J.P. Bonnet, B. Tanouti, Ceram. Int. 39, 21 (2013)

    Article  CAS  Google Scholar 

  23. A. Tkach, O. Okhay, A. Almeida, P.M. Vilarinho, Acta Mater. 130, 249 (2017)

    Article  CAS  Google Scholar 

  24. X. Zhao, W. Chen, L.X. Zhang, J.H. Gao, L.S. Zhong, Appl. Phys. A 118, 931 (2015)

    Article  CAS  Google Scholar 

  25. W. Chen, X. Zhao, J. Sun, L.X. Zhong, L.S. Zhong, J. Alloys Compd. 670, 48 (2016)

    Article  CAS  Google Scholar 

  26. M. Liu, M.H. Cao, F.Z. Zeng, J.L. Qi, H.X. Liu, H. Hao, Z.H. Yao, Ceram. Int. 44, 20239 (2018)

    Article  CAS  Google Scholar 

  27. B.B. Liu, X.H. Wang, R.X. Zhang, L.T. Li, J. Alloy. Compd. 691, 619 (2017)

    Article  CAS  Google Scholar 

  28. W.G. Pan, M.H. Cao, C.L. Diao, C. Tao, H. Hao, Z.H. Yao, Z.Y. Yu, H.X. Liu, J. Mater. Sci. 54, 12401 (2019)

    Article  CAS  Google Scholar 

  29. P.L. Yuan, D.B. Li, L. Shi, Ceram. Int. 45, 12594 (2019)

    Article  CAS  Google Scholar 

  30. X.L. Deng, Z.X. Zeng, R.C. Xu, X.F. Qin, X.X. Li, Y.Q. Wang, R.L. Gao, Z.H. Wang, G. Chen, W. Cai, C.L. Fu, J. Mater. Sci. Mater. Electron. 30, 16502 (2019)

    Article  CAS  Google Scholar 

  31. S.K. Pradhan, B.K. Roul, Phys. B 407, 2527 (2012)

    Article  CAS  Google Scholar 

  32. B.B. Liu, X. Wang, Q. Zhao, J. Am. Ceram. Soc. 98, 2641 (2015)

    Article  CAS  Google Scholar 

  33. T. Wang, L. Jin, L.L. Shu, Q.Y. Hu, X.Y. Wei, J. Alloys Compd. 617, 399 (2014)

    Article  CAS  Google Scholar 

  34. Q.M. Zhang, L. Wang, J. Luo, Q. Tang, J. Du, J. Am. Ceram. Soc. 92, 1871 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (NO. 51872213), the National Key Basic Research Program of China (973 Program NO. 2015CB654601), the Fundamental Research Funds for the Central Universities (NO. 195101007), Technical Innovation Special Program of Hubei Province (NO. 2017AHB055), China Scholarship Council (201906950070) and State Key Laboratory of Advanced Technology for Materials Synthesis and Processing (Wuhan University of Technology).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minghe Cao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, Y., Cao, M., He, Z. et al. High breakdown strength and energy storage density of Er0.02Sr0.97TiO3@MgO2–Al2O3–SiO2 ceramics with core–shell structure sintered in oxygen atmosphere. J Mater Sci: Mater Electron 31, 13408–13414 (2020). https://doi.org/10.1007/s10854-020-03895-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03895-6

Navigation