Skip to main content
Log in

Dielectrics and battery studies on flexible nanocomposite gel polymer electrolyte membranes for sodium batteries

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present study, electrochemical impedance analysis in terms of electrical conductivity, dielectric permittivity, and electrical modulus has been carried out of prepared sodium ion-conducting nanocomposite gel polymer electrolyte. To study ion conduction behavior, frequency-dependent AC conductivity has also been analyzed. Dielectric constant (ε′) and dielectric loss (ε′′) as a function of frequency with different nanofiller SiO2 concentrations as well as at different temperatures ranging from 303 to 333 K have been discussed. The low-frequency region showed high values of dielectric constant due to polarization at the electrode–electrolyte interface. Frequency-dependent real (M′) and imaginary part (M′′) of modulus reveal large capacitance associated with it at lower frequency whereas dispersion (conductivity relaxation) at a higher frequency. The tangent loss (tan δ) of the electrolyte systems has been determined for different frequencies and concentrations of fumed silica nanoparticles. The high conducting nanocomposite gel polymer membrane exhibited an electrochemical stability window of ≈ 3.3 V which is sufficient to apply this material as a separator for electrochemical device application. The conductivity, dielectric, modulus, and electrochemical stability studies reveal that sodium ion-conducting nanocomposite gel polymer electrolytes offer good electrochemical properties and are suitable for application in any electrochemical/power conversion device. The optimized flexible nanocomposite gel polymer electrolyte films have been used in a prototype sodium battery, which shows a stable open-circuit potential of ~ 2.1 V and a significant first specific discharge capacity of ~ 500 mAh g−1 at a drain current of 14 mA g−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J.B. Goodenough, K.-S. Park, The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135(4), 1167–1176 (2013)

    CAS  Google Scholar 

  2. O.V. Lonchakova, O.A. Semenikhin, M.V. Zakharkin, E.A. Karpushkin, V.G. Sergeyev, E.V. Antipov, Efficient gel-polymer electrolyte for sodium-ion batteries based on poly(acrylonitrile-co-methyl acrylate). Electrochim. Acta 334, 135512 (2020)

    CAS  Google Scholar 

  3. D. Kumar, D.K. Kanchan, S.B. Kuhar, Room temperature sodium-sulfur batteries as emerging energy source. J. Energy Storage 18, 133–148 (2018)

    Google Scholar 

  4. R. Deivanayagam, B.J. Ingram, R.S. Yassar, Progress in development of electrolytes for magnesium batteries. Energy Storage Mater. 21, 136–153 (2019)

    Google Scholar 

  5. C. Maheshwaran, D.K. Kanchan, K. Gohel, K. Mishra, D. Kumar, Effect of Mg(CF3SO3)2 concentration on structural and electrochemical properties of ionic liquid incorporated polymer electrolyte membranes. J. Solid State Electrochem. 24, 655–665 (2020). https://doi.org/10.1007/s10008-020-04507-3

    Article  CAS  Google Scholar 

  6. X. Zhang, D. Yang, X. Rui, Y. Yu, S. Huang, Advanced cathodes for potassium-ion battery. Curr. Opin. Electrochem. 18, 24–30 (2019)

    CAS  Google Scholar 

  7. M. Xu, D.G. Ivey, Z. Xie, W. Qu, Rechargeable Zn-air batteries: progress in electrolyte development and cell configuration advancement. J. Power Sources 283, 358–371 (2015)

    CAS  Google Scholar 

  8. A.R. Despić, Design characteristics of an aluminium-air battery with consumable wedge anodes. J. Appl. Electrochem. 15, 191–200 (1985)

    Google Scholar 

  9. A. Chandrasekhar, V. Vivekananthan, S.-J. Kim, A fully packed spheroidal hybrid generator for water wave energy harvesting and self-powered position tracking. Nano Energy 69, 104439 (2020)

    CAS  Google Scholar 

  10. A. Sukumaran, V. Vivekananthan, V. Mohan, Z.C. Alex, A. Chandrasekhar, S.-J. Kim, Triboelectric nanogenerators from reused plastic: an approach for vehicle security alarming and tire motion monitoring in rover. Appl. Mater. Today 19, 100625 (2020)

    Google Scholar 

  11. A. Chandrasekhar, V. Vivekananthan, G. Khandelwal, S.-J. Kim, Sustainable human-machine interactive triboelectric nanogenerator toward a smart computer mouse. ACS Sustain. Chem. Eng. 7(7), 7177–7182 (2019)

    CAS  Google Scholar 

  12. A. Chandrasekhar, N.R. Alluri, M.S.P. Sudhakaran, Y.S. Mokd, S.-J. Kim, A smart mobile pouch as a biomechanical energy harvester towards self-powered smart wireless power transfer applications. Nanoscale 9, 9818–9824 (2017)

    CAS  Google Scholar 

  13. A. Chandrasekhar, N.R. Alluri, V. Vivekananthan, Y. Purusothamana, S.-J. Kim, A sustainable freestanding biomechanical energy harvesting smart backpack as a portable-wearable power source. J. Mater. Chem. C 5, 1488–1493 (2017)

    CAS  Google Scholar 

  14. A. Ponrouch, D. Monti, A. Boschin, B. Steen, P. Johansson, M.R. Palacín, Non-aqueous electrolytes for sodium-ion batteries. J. Mater. Chem. A 3, 22–42 (2015)

    CAS  Google Scholar 

  15. A. Kumar, S.A. Hashmi, Ion transport and ion–filler-polymer interaction in poly(methyl methacrylate)-based, sodium ion conducting, gel polymer electrolytes dispersed with silica nanoparticles. J. Power Sources 195, 5101–5108 (2010)

    CAS  Google Scholar 

  16. M. Jahn, M. Sedlaříková, J. Vondrák, L. Pařízek, PMMA-based electrolytes for li-ion batteries. ECS Trans. 74(1), 159–164 (2016)

    CAS  Google Scholar 

  17. M. Zhu, J. Wu, Y. Wang, M. Song, L. Long, S.H. Siyal, X. Yang, G. Sui, Recent advances in gel polymer electrolyte for high-performance lithium batteries. J. Energy Chem. 37, 126–142 (2019)

    Google Scholar 

  18. K. Mishra, T. Arif, R. Kumar, D. Kumar, Effect of Al2O3 nanoparticles on ionic conductivity of PVdF-HFP/PMMA blend-based Na+-ion conducting nanocomposite gel polymer electrolyte. J. Solid State Electrochem. 23(8), 2401–2409 (2019)

    CAS  Google Scholar 

  19. D.J. Kim, M.J. Jo, S.Y. Nam, A review of polymer–nanocomposite electrolyte membranes for fuel cell application. J. Ind. Eng. Chem. 21, 36–52 (2015)

    CAS  Google Scholar 

  20. H. Che, S. Chen, Y. Xie, H. Wang, K. Amine, X.-Z. Liao, Z.-F. Ma, Electrolyte design strategies and research progress for room-temperature sodium-ion batteries. Energy Environ. Sci. 10, 1075–1101 (2017)

    CAS  Google Scholar 

  21. L.G. Chagas, S. Jeong, I. Hasa, S. Passerini, Ionic liquid-based electrolytes for sodium-ion batteries: tuning properties to enhance the electrochemical performance of manganese-based layered oxide cathode. ACS Appl. Mater. Interfaces 11(25), 22278–22289 (2019)

    CAS  Google Scholar 

  22. D. Kumar, Effect of organic solvent addition on electrochemical properties of ionic liquid-based Na+ conducting gel electrolytes. Solid State Ionics 318, 65–70 (2018)

    CAS  Google Scholar 

  23. C.-H. Dustmann, Advances in ZEBRA batteries. J. Power Sources 127, 85–92 (2004)

    CAS  Google Scholar 

  24. R. Wang, H. Mo, S. Li, Y. Gong, B. He, H. Wang, Influence of Conductive additives on the stability of red phosphorus carbon anodes for sodium-ion batteries. Sci. Rep. 9, 946 (2019). https://doi.org/10.1038/s41598-018-36797-z

    Article  CAS  Google Scholar 

  25. W. Tian, L. Wang, K. Huo, X. He, Red phosphorus filled biomass carbon as high-capacity and long-life anode for sodium-ion batteries. J. Power Sources 430, 60–66 (2019)

    CAS  Google Scholar 

  26. Z. Li, H. Zhao, Recent developments of phosphorus-based anodes for sodium ion batteries. J. Mater. Chem. A 6, 24013 (2018)

    CAS  Google Scholar 

  27. H. Liu, S. Zhang, Q. Zhu, B. Cao, P. Zhang, N. Sun, B. Xu, F. Wua, R. Chen, Fluffy carbon-coated red phosphorus as a highly stable and high-rate anode for lithium-ion batteries. J. Mater. Chem. A7, 11205–11213 (2019)

    Google Scholar 

  28. S. Sharma, D. Pathak, N. Dhiman, R. Kumarand, M. Kumar, FTIR, thermal and ionic conductivity studies of nanocomposite polymer electrolytes. Surf. Innov. 7(1), 51–58 (2019)

    Google Scholar 

  29. K.W. Chew, K.W. Tan, The effects of ceramic fillers on PMMA-based polymer electrolyte salted with lithium triflate, LiCF3SO3. Int. J. Electrochem. Sci. 6, 5792–5801 (2011)

    CAS  Google Scholar 

  30. B.A. Boukamp, A Linear Kronig−Kramers transform test for immittance data validation. J. Electrochem. Soc. 142, 1885–1894 (1995)

    CAS  Google Scholar 

  31. N.K. Singh, M.L. Verma, M. Minakshi, PEO nanocomposite polymer electrolyte for solid state symmetric capacitors. Bull. Mater. Sci. 38, 1577–1588 (2015)

    CAS  Google Scholar 

  32. K. Gohel, D.K. Kanchan, Ionic conductivity and relaxation studies in PVDF-HFP:PMMA-based gel polymer blend electrolyte with LiClO4 salt. J. Adv. Dielectrics 08(01), 1850005 (2018)

    CAS  Google Scholar 

  33. F. Croce, B. Scrosati, G. Mariotto, Electrochemical and spectroscopic study of the transport properties of composite polymer electrolytes. J. Chem. Mater. 4, 1134–1136 (1992)

    CAS  Google Scholar 

  34. S.B. Aziz, J.W. Thompson, M.F.Z. Kadir, H.M. Ahmed, A conceptual review on polymer electrolytes and ion transport models. J. Sci. 3, 1–17 (2018)

    Google Scholar 

  35. K. Gohel, D.K. Kanchan, Effect of PC: DEC plasticizers on structural and electrical properties of PVDF–HFP:PMMA based gel polymer electrolyte system. J. Mater. Sci. 30, 12260–12268 (2019)

    CAS  Google Scholar 

  36. S. Choudhary, R.J. Sengwa, Effects of different inorganic nanoparticles on the structural, dielectric and ion transportation properties of polymers blend based nanocomposite solid polymer electrolytes. Electrochim. Acta 247, 924–941 (2017)

    CAS  Google Scholar 

  37. W. Wang, P. Alexandridis, Composite polymer electrolytes: nanoparticles affect structure and properties. Polymers 8, 1–36 (2016)

    Google Scholar 

  38. M. Hema, P. Tamilselvi, Lithium ion conducting PVA:PVdF polymer electrolytes doped with nano SiO2 and TiO2 filler. J. Phys. Chem. Solids 97–98, 42–48 (2016)

    Google Scholar 

  39. P. Lun, P. Liu, H. Lin, Z. Dai, Z. Zhang, D. Chen, Ionic conductivity promotion of polymer membranes with oxygen-ion conducting nanowires for rechargeable lithium batteries. J. Membr. Sci. 580, 92–100 (2019)

    CAS  Google Scholar 

  40. A. Bhardwaj, A. Kumar, H. Bae, C.-J. Park, S.-J. Song, Surface decorated spinel-oxide electrodes for mixed-potential ammonia sensor: performance and DRT analysis. J. Hazard. Mater. 396, 122601 (2020)

    CAS  Google Scholar 

  41. M.S. Munde, D.Z. Gao, A.L. Shluger, Diffusion and aggregation of oxygen vacancies in amorphous silica. J. Phys. 29, 245701 (2017)

    Google Scholar 

  42. A. Karmakar, A. Ghosh, Dielectric permittivity and electric modulus of polyethylene oxide (PEO)-LiClO4 composite electrolytes. Curr. Appl. Phys. 12, 539–543 (2012)

    Google Scholar 

  43. K.S. Hemalatha, G. Sriprakash, M.V.N.A. Prasad, R. Damle, K. Rukmani, Temperature dependent dielectric and conductivity studies of polyvinyl alcohol-ZnO nanocomposite films by impedance spectroscopy. J. Appl. Phys. 118, 154103–154116 (2015)

    Google Scholar 

  44. A. Kyritsis, P. Pissis, J. Grammatikakis, Dielectric relaxation spectroscopy in poly(hydroxyethylene acrylates)/water hydrogels. J. Poly. Sci. Part B Poly. Phys. 33, 1737–1750 (1995)

    CAS  Google Scholar 

  45. T. Regu, C. Ambika, K. Karuppasamy, H. Rajan, D. Vikraman, J.-H. Jeon, H.-S. Kim, T.A.B. Raj, Proton transport and dielectric properties of high molecular weight polyvinylpyrrolidone (PVPK90) based solid polymer electrolytes for portable electrochemical devices. J. Mater. Sci. 30, 11735–11747 (2019)

    CAS  Google Scholar 

  46. P. Sharma, D.K. Kanchan, A comparison of effect of PEG and EC plasticizers on relaxation dynamics of PEO-PMMA-AgNO3 polymer blend. Ionics 19, 1285–1290 (2013)

    CAS  Google Scholar 

  47. D.K. Pradhan, R.N.P. Choudhary, B.K. Samantaray, Studies of dielectric and electrical properties of plasticized polymer nano composite electrolytes. J. Mater. Chem. Phys. 115, 557–561 (2009)

    CAS  Google Scholar 

  48. J.Y. Hwang, S.T. Myung, Y.K. Sun, Sodium-ion batteries: present and future. Chem. Soc. Rev. 46, 3529–3614 (2017)

    CAS  Google Scholar 

  49. D. Kumar, D.K. Kanchan, S. Kumar, K. Mishra, Recent trends on tailoring cathodes for room-temperature Na-S batteries. Mater. Sci. Energy Technol. 2, 117–129 (2019)

    Google Scholar 

  50. V. Kumar, Y. Wang, A.Y.S. Eng, M.-F. Ng, Z.W. She, A biphasic interphase design enabling high performance in room temperature sodium-sulfur batteries. Cell Rep. Phys. Sci. (2020). https://doi.org/10.1016/j.xcrp.2020.100044

    Article  Google Scholar 

  51. V. Kumar, A.Y. Sheng Eng, Y. Wang, D.-T. Nguyen, M.-F. Ng, Z.W. Seh, An artificial metal-alloy interphase for high-rate and long-life sodium–sulfur batteries. Energy Storage Mater. 15, 20 (2020). https://doi.org/10.1016/j.ensm.2020.03.027

    Article  Google Scholar 

Download references

Acknowledgements

Deepak Kumar thanks and acknowledges “The M.S. University of Baroda,” Vadodara, Gujarat, India. He thanks and acknowledges Dr. S.A. Hashmi, University of Delhi, Delhi, India, for constant motivation and support. The encouragement received from Electronics and Mechanical Engineering School (Affiliated to Gujarat Technological University), Corps of Electronics and Mechanical Engineers, Ministry of Defence, Government of India, is highly acknowledged. Part of this research work was performed at University of Delhi, Delhi, India. Kuldeep Mishra acknowledges the funding (File No. YSS/2015/001234) from Science and Engineering Research Board (SERB) New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Kumar.

Ethics declarations

Conflicts of interest

The authors report no conflicting interest in any capacity, competing, or financial.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, D., Gohel, K., Kanchan, D.K. et al. Dielectrics and battery studies on flexible nanocomposite gel polymer electrolyte membranes for sodium batteries. J Mater Sci: Mater Electron 31, 13249–13260 (2020). https://doi.org/10.1007/s10854-020-03877-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03877-8

Navigation