Skip to main content
Log in

Intersection behavior of the current–voltage (I–V) characteristics of the (Au/Ni)/HfAlO3/n-Si (MIS) structure depends on the lighting intensity

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The current–voltage (I–V) and capacitance–voltage (C–V) behaviors of the (Au/Ni)/HfAlO3/n-Si (MIS) junctions at room temperature under white light with various intensities were investigated. The ln(I)–V curves show two linear behavior regions at about 1 V before and after the point of intersection that can be defined as two separate current-conduction (CMs) Mechanisms. The values of the ideality factor (n) and the zero-bias barrier height (ΦB0) were extracted using the slope and intercept of the ln(I)–V curve before and after the intersection point based on lighting power. Although the ΦB0 values decrease with increasing light power, n increases for two regions, and there is a strong linear relationship between them. The values of photo-current (Iph) increase with the increasing lighting power due to the formation of electron–hole pairs. The slope of the double-logarithmic Iph–P was changed from 0.422 to 0.852, respectively, at − 2 V and − 9 V, which indicates the ongoing distribution of Nss. In addition, the profile of surface states (Nss) ionized by light was obtained from the capacitance measured in dark and under lighting at 1 MHz. The Nss–V curve has two characteristic peaks that correspond to the region of depletion and accumulation due to a special distribution of Nss and their restructuring and reordering under the effects of lighting and an electric field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R. Singh, P. Sharma, M.A. Khan, V. Garg, V. Awasthi, A. Kranti, S. Mukherjee, J. Phys. D 49, 445303 (2016)

    Article  Google Scholar 

  2. C.F. Liu, X.G. Tang, X.B. Guo, Q.X. Liu, Y.P. Jiang, Z.H. Tang, W.H. Li, Mater. Des. 188, 108465 (2020)

    Article  CAS  Google Scholar 

  3. P. Chakrabarty, N. Gogurla, N. Bhandaru, S.K. Ray, R. Mukherjee, Nanotechnology 29, 505301 (2018)

    Article  Google Scholar 

  4. S.M. Sze, Physics of Semiconductor Devices, 2nd edn. (Wiley, New York, 1981)

    Google Scholar 

  5. E.H. Rhoderick, R.H. Williams, Metal-Semiconductor Contacts, 2nd edn. (Oxford University Press, Oxford, 1988)

    Google Scholar 

  6. H.C. Card, E.H. Rhoderick, J. Phys. D 4, 1589–1601 (1971)

    Article  CAS  Google Scholar 

  7. E. Arslan, S. Ural, Ş. Altındal, E. Özbay, Microelectron. Reliab. 103, 113517 (2019)

    Article  CAS  Google Scholar 

  8. S. Altindal, J. Farazin, G. Pirgholi-Givi, E. Maril, Y. Azizian-Kalandaragh, Phys. B 582, 411958 (2020)

    Article  CAS  Google Scholar 

  9. J.Y. Cheng, H.T. Lu, J.G. Hwu, Appl. Phys. Lett. 96, 233506 (2010)

    Article  Google Scholar 

  10. C.Y. Yang, J.G. Hwu, IEEE Sens. J. 12, 2313–2319 (2012)

    Article  Google Scholar 

  11. M. Ritala, M. Leskelä, L. Niinistö, T. Prohaska, G. Friedbacher, M. Grasserbauer, Thin Solid Film 250, 72–80 (1994)

    Article  CAS  Google Scholar 

  12. M. Gutowski, J.E. Jaffe, C.L. Liu, M. Stoker, R.I. Hegde, R.S. Rai, P.J. Tobin, Appl. Phys. Lett. 80, 1897–1899 (2002)

    Article  CAS  Google Scholar 

  13. H.A. Qayyum, M.F. Al-Kuhailia, S.M.A. Durrania, T. Hussaina, S.H.A. Ahmad, M. Ikram, J. Alloy. Compd. 747, 374–384 (2018)

    Article  CAS  Google Scholar 

  14. M.F. Al-Kuhaili, Opt. Mater. 27, 383–387 (2004)

    Article  CAS  Google Scholar 

  15. R. Zazpe, M. Ungureanu, F. Golmar, P. Stoliar, R. Llopis, F. Casanova, D.F. Pickup, C. Rogero, L.E. Hueso, J. Mater. Chem. C 2, 3204–3211 (2014)

    Article  CAS  Google Scholar 

  16. H. Kim, P.C. McIntyre, K.C. Saraswat, Appl. Phys. Lett. 82, 106 (2003)

    Article  CAS  Google Scholar 

  17. T.P. Ma, H.M. Bu, X.W. Wang, L.Y. Song, W. He, M. Wang, H.H. Tseng, J.P. Tobin, IEEE Trans. Device Mater. Rel. 5, 36–44 (2005)

    Article  CAS  Google Scholar 

  18. S. Papernov, M.D. Brunsman, J.B. Oliver, B.N. Hoffman, A.A. Kozlov, S.G. Demos, A. Shvydky, F.H.M. Cavalcante, L. Yang, C.S. Menoni, B. Roshanzadeh, S.T.P. Boyd, L.A. Emmert, W. Rudolph, Optic. Exp. 26, 17608 (2018)

    Article  CAS  Google Scholar 

  19. G.K. Dalapati, Y. Tong, W.-Y. Loh, H.K. Mun, B.J. Cho, I.E.E.E. Trans, Electron. Device. 54, 1831 (2007)

    Article  CAS  Google Scholar 

  20. P.K. Park, S. Kang, Appl. Phys. Lett. 89, 192905 (2006)

    Article  Google Scholar 

  21. M.N.U. Bhuyian, D. Misra, IEEE Trans. Device Mater. Reliab. 15, 229–235 (2015)

    Article  Google Scholar 

  22. H.G. Çetinkaya, Ö. Sevgili, Ş. Altındal, Phys. B 560, 91–96 (2019)

    Article  Google Scholar 

  23. I. Taşçıoğlu, U. Aydemir, S. Altındal, B. Kınacı, S. Özçelik, J. Appl. Phys. 109, 054502 (2011)

    Article  Google Scholar 

  24. A. Canbaya, A. Tataroğlu, W.A. Farooq, A. Dere, A. Karabulut, M. Atif, A. Hanif, Mater. Sci. Semicond. Process. 107, 104858 (2020)

    Article  Google Scholar 

  25. S. Chand, Semicond. Sci. Technol. 19, 82–86 (2004)

    Article  CAS  Google Scholar 

  26. S. Chand, S. Bala, Appl. Surface Sci. 252, 358–363 (2005)

    Article  CAS  Google Scholar 

  27. J. Osvald, Solid-State Commun. 138, 39–42 (2006)

    Article  CAS  Google Scholar 

  28. M. Ravimandan, P. Koteswara, V.R. Reddy, Semicond. Sci. Technol. 24, 035004 (2009)

    Article  Google Scholar 

  29. H. Tecimer, T. Tunç, S. Altındal, J. Mater. Sci. Mater. Electron. 29, 3790–3799 (2018)

    Article  CAS  Google Scholar 

  30. H. Uslu, M. Yıldırım, Ş. Altındal, P. Durmuş, Radiat. Phys. Chem. 81, 362–369 (2012)

    Article  CAS  Google Scholar 

  31. A. Kaymaz, H. Uslu Tecimer, E. Evcin Baydilli, Ş. Altındal, J. Mater. Sci. Mater. Electron. 31, 8349–8358 (2020)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Engin Arslan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arslan, E., Badali, Y., Altındal, Ş. et al. Intersection behavior of the current–voltage (I–V) characteristics of the (Au/Ni)/HfAlO3/n-Si (MIS) structure depends on the lighting intensity. J Mater Sci: Mater Electron 31, 13167–13172 (2020). https://doi.org/10.1007/s10854-020-03868-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03868-9

Navigation