Skip to main content
Log in

Structural, electrical, ferroelastic behavior, and multiferroic properties of BiFeO3

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

BiFeO3 was synthesized by conventional solid-state reaction method, and its structural, vibrational, electrical, ferroelastic, and multiferroic properties were studied. X-ray diffraction analysis and Rietveld refinement confirmed its rhombohedral crystal structural with the space group of R3c. SEM images show the rectangular shaped micrograins. The stress–strain curves obtained from uniaxial compressive tests with different maximum stresses exhibit hysteresis loops with different remnant strains due to ferroelastic domain switching during compression loading and partial domain switching back upon unloading. From Raman spectra, we have observed 3A1 and 6E modes in the range of 100–600 cm−1. Dielectric constant and dielectric loss were measured as a function of frequency in the range 100 Hz to 1 MHz. The leakage current density was found to be \(8.07\times {10}^{-7}\) A/cm2 at higher electric field. In further, we performed the ferroelectric, magnetic, and magnetoelectric effect for the confirmation of its multiferroic behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5 
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. N.A. Hill, Why are there so few magnetic ferroelectrics? J. Phys. Chem. B. 104, 6694–6709 (2000)

    CAS  Google Scholar 

  2. M. Muneeswaran, P. Jegatheesan, M. Gopiraman, I.S. Kim, N.V. Giridharan, Structural, optical, and multiferroic properties of single phased BiFeO3. Appl. Phys. A. 114, 853–859 (2014)

    CAS  Google Scholar 

  3. T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, Y. Tokura, Magnetic control of ferroelectric polarization. Nature 426, 55–58 (2003)

    CAS  Google Scholar 

  4. J. Mundy, D.A. Muller, P. Schiffer, J.C. Fennie, R. Ramesh, W.D. Ratcliff, J.A. Borchers, A. Scholl, E. Arenholz, Atomically engineered ferroic layers yield a room-temperature magnetoelectric multiferroic. Nature 537, 523–527 (2016)

    CAS  Google Scholar 

  5. B.B. Van Aken, T.T. Palstra, A. Filippetti, N.A. Spaldin, The origin of ferroelectricity in magnetoelectric YMnO3. Nat. Mater. 3, 164–170 (2004)

    Google Scholar 

  6. C. Fennie, Magnetic and electric phase control in epitaxial. Phys. Rev. Lett. 97, 267602 (2006)

    Google Scholar 

  7. R. Seshadri, N.A. Hill, Visualizing the role of Bi 6s “Lone Pairs” in the Off-center distortion in ferromagnetic BiMnO3. Chem. Mater. 13, 2892–2899 (2001)

    CAS  Google Scholar 

  8. J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, R. Ramesh, Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719 (2003)

    Article  CAS  Google Scholar 

  9. T.T. Carvalho, P.B. Tavares, Synthesis and thermodynamic stability of multiferroic BiFeO3. Mater. Lett. 62, 3984–3986 (2008)

    CAS  Google Scholar 

  10. S.M. Selbach, A. Einarsrud, T. Grande, On the thermodynamic stability of BiFeO3. Chem. Mater. 21, 169–173 (2009)

    CAS  Google Scholar 

  11. Z. Liu, S. Liang, S. Li, Y. Zhu, X. Zhu, Synthesis, microstructural characterization, and dielectric properties of BiFeO3 microcrystals derived from molten salt method. Ceram. Int. 41, S19–25 (2015)

    CAS  Google Scholar 

  12. S.K. Pradhan, B.K. Roul, Improvement of multiferroic and leakage property in monophasic BiFeO3. Phys. B 406, 3313–3317 (2011)

    CAS  Google Scholar 

  13. P. Bai, Y. Zeng, J. Hana, Y. Wei, M. Li, Influence of Al doping on structural, dielectric, and ferroelectric properties of multiferroic BiFeO3 ceramics. Ceram. Inter. 45, 7730–7735 (2019)

    CAS  Google Scholar 

  14. Z.X. Cheng, A.H. Li, X.L. Wang, S.X. Dou, K. Ozawa, H. Kimura, S.J. Zhang, T.R. Shrout, Structure, ferroelectric properties, and magnetic properties of the La-doped bismuth ferrite. J. Appl. Phys. 103, 07E507 (2008)

    Google Scholar 

  15. A. Kumar, P. Singh, R. Janay, D. Pandey, Effect of Mn-doping on the low temperature magnetic phase transitions of BiFeO3. J. Alloys Compd. 825, 154148 (2020)

    CAS  Google Scholar 

  16. V.A. Khomchenko, I.O. Troyanchuk, D.V. Karpinsky, Structural and magnetic phase transitions in Bi1-xPrxFeO3 perovskites. J. Mater. Sci. 47, 1578–1581 (2012)

    CAS  Google Scholar 

  17. A. Agarwal, P. Aghamkar, V. Singh, O. Singh, A. Kumar, Structural transitions and multiferrocity in Ba and Co substituted nanosized bismuth ferrite. J. Alloy. Comp. 697, 333–340 (2017)

    Google Scholar 

  18. S.G.N. Sinha, G.R. BinayKumar, Combined structural, electrical, magnetic and optical characterization of bismuth ferrite nanoparticles synthesized by auto-combustion route. Asian Ceram. Soc. 2, 416–421 (2014)

    Google Scholar 

  19. Y. Xu, Y. Gao, H. Xing, J. Zhang, Room temperature spontaneous exchange bias in BiFeO3 micro/nano powders synthesized by hydrothermal method. Ceram. Int. 44, 17459–17463 (2018)

    CAS  Google Scholar 

  20. M. Johnsson, P. Lemmens, Crystallography and Chemistry of Perovskites. Handb. Magn. Adv. Magn. Mater. (2007). https://doi.org/10.1002/9780470022184.hmm411

    Article  Google Scholar 

  21. S.K. Streiffer, C.B. Parker, A.E. Romanov, M.J. Lefevre, L. Zhao, J.S. Speck, W. Pompe, C.M. Foster, G.R. Bai, Domain patterns in epitaxial rhombohedral ferroelectric films. I. Geometry and experiments. J. Appl. Phys. 83, 2742–2753 (1998)

    CAS  Google Scholar 

  22. E.K.H. Salje, Ferroelastic materials. Ann. Rev. Mater. Res. 42, 265–283 (2012)

    CAS  Google Scholar 

  23. W. Araki, J. Malzbender, Ferroelastic deformation of La0.58Sr0.4Co0.2Fe0.8O3-δ under uniaxial compressive loading. J. Eur. Ceram. Soc. 33, 805–812 (2013)

    CAS  Google Scholar 

  24. A. Keitsiro, Possible species of ferromagnetic, ferroelectric, and ferroelastic crystals. Phys. Rev. B. 2, 754 (1970)

    Google Scholar 

  25. A. Alsubaie, P. Sharma, J.H. Lee, J.Y. Kim, C.H. Yang, J. Seidel, Uniaxial strain controlled ferroelastic domain evolution in BiFeO3. ACS Appl. Mater. Interfaces 10, 11768–11775 (2018)

    CAS  Google Scholar 

  26. B.D. Cullity, Elements of X-ray Diffraction, 2nd edn. (Addison-Wesley, Boston, 1978)

    Google Scholar 

  27. J.I. Langford, A.J.C. Wilson, Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J. Appl. Cryst. 11, 102–113 (1978)

    CAS  Google Scholar 

  28. R. Haumont, J. Kreisel, P. Bouvier, F. Hippert, Phonon anomalies and the ferroelectric phase transition in multiferroic BiFeO3. Phys. Rev. B 73, 132101 (2006)

    Google Scholar 

  29. Y. Yang, J.Y. Sun, K. Zhu, Y.L. Liu, J. Chen, X.R. Xing, Raman study of BiFeO3 with different excitation wavelengths. Phys. B 404, 171–174 (2009)

    CAS  Google Scholar 

  30. M. Muneeswaran, P. Jegatheesan, N.V. Giridharan, Synthesis of nanosized BiFeO3 powders by co-precipitation method. J. Exp. Nanosci. 8, 341–346 (2013)

    CAS  Google Scholar 

  31. C. Elissalde, J. Ravez, Ferroelectric ceramics: defects and dielectric relaxations. J. Mater. Chem. 11, 1957–1967 (2001)

    CAS  Google Scholar 

  32. M. Muneeswaran, R. Dhanalakshmi, N.V. Giridharan, Effect of Tb substitution on structural, optical, electrical and magnetic properties of BiFeO3. J. Mater. Sci. Mater. Electron. 26, 3827–3839 (2015)

    CAS  Google Scholar 

  33. Q.H. Jiang, C.W. Nan, Z.J. Shen, Synthesis and properties of multiferroic La-modified BiFeO3 ceramics. J. Am. Ceram. Soc. 89, 2123–2127 (2006)

    CAS  Google Scholar 

  34. Z. Zhong, H. Ishiwara, Variation of leakage current mechanisms by ion substitution in BiFeO3 thin films. Appl. Phys. Lett. 95, 112902 (2009)

    Google Scholar 

  35. M. Muneeswaran, J.W. Jang, J.H. Jeong, A.A. Fakhrabadi, N.V. Giridharan, Effect of dopant-induced defects on structural, electrical, and enhanced ferromagnetism and magnetoelectric properties of Dy and Sr co-doped BiFeO3. J. Mater. Sci. Mater. Electron. 30, 7359–7366 (2019)

    CAS  Google Scholar 

  36. F.A. Kroger, H.J. Vink, in Solid State Physics, ed. by F. Seitz, D. Turnbull (Academic Press, New York, 1956), p. 307

    Google Scholar 

  37. W. Cai, C. Fu, W. Hu, G. Chen, X. Deng, Effects of microwave sintering power on microstructure, dielectric, ferroelectric and magnetic properties of bismuth ferrite ceramics. J. Alloys Compd. 554, 64–71 (2013)

    CAS  Google Scholar 

  38. Y.P. Wang, G.L. Yuan, X.Y. Chen, J.M. Liu, Z.G. Liu, Electrical and magnetic properties of single-phased and highly resistive ferroelectromagnet BiFeO3 ceramic. J. Phys. D: Appl. Phys. 39, 2019 (2006)

    CAS  Google Scholar 

  39. M. Muneeswaran, S.H. Lee, D.H. Kim, B.S. Jung, S.H. Chang, J.W. Jang, B.C. Choi, J.H. Jeong, N.V. Giridharan, C. Venkateswaran, Structural, vibrational, and enhanced magneto-electric coupling in Ho-substituted BiFeO3. J. Alloys Compd. 750, 276–285 (2018)

    CAS  Google Scholar 

  40. W. Araki, K. Takeda, Y. Arai, Mechanical behaviour of ferroelastic lanthanum metal oxides LaMO3 (M=Co, Al, Ga, Fe). J. Eur. Ceram. Soc. 36, 4089–4409 (2016)

    CAS  Google Scholar 

  41. T. Leist, K.G. Webber, W. Jo, T. Granzow, E. Aulbach, J. Suffner, J. Rodel, Domain switching energies: mechanical versus electrical loading in La-doped bismuth ferrite–lead titanite. J. Appl. Phys. 109, 054109 (2011)

    Google Scholar 

  42. N. Islam, W. Araki, Y. Arai, Mechanical properties of ferroelastic La0.6Sr0.4Co0.2Fe0.8O3-Δ with various porosities and pore sizes. J. Mater Sci. 54, 5256–5265 (2019)

    CAS  Google Scholar 

  43. M.N. Islam, W. Araki, Y. Arai, Mechanical behavior of ferroelastic porous La0.6Sr0.4Co0.2Fe0.8O3−δ prepared with different pore formers. Ceram. Int. 43, 14989–14995 (2017)

    CAS  Google Scholar 

  44. G. Lu, S. Li, X. Ding, J. Sun, E.K.H. Salje, Ferroelectric switching in ferroelastic materials with rough surfaces. Sci. Rep. 9, 1–7 (2019)

    Google Scholar 

  45. P. Sen, A. Dey, A.K. Mukhopadhyay, S.K. Bandyopadhyay, A.K. Himanshu, Nanoindentation behavior of nano BiFeO3. Ceram. Int. 38, 1347–1352 (2012)

    CAS  Google Scholar 

  46. J.M. Saldana, G.A. Schneider, L.M. Eng, Stress induced movement of ferroelastic domain walls in BaTiO3 single crystals evaluated by scanning force microscopy. Surf. Sci 480, L402–L410 (2001)

    Google Scholar 

  47. M. Okayasu, K. Bam, Domain switching characteristics of lead zirconate titanate piezoelectric ceramics on a nanoscopic scale. J. Eur. Ceram. Soc. 37, 145–159 (2017)

    CAS  Google Scholar 

  48. B. Ruette, S. Zvyagin, A.P. Pyatakov, A. Bush, J.F. Li, V.I. Belotelov, A.K. Zvezdin, D. Viehland, Magnetic-field-induced phase transition in BiFeO3 observed by high-field electron spin resonance: cycloidal to homogeneous spin order. Phys. Rev. B. 69, 064114 (2004)

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge FONDECYT Postdoctoral Research Project No. 3180055, Government of Chile, for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muniyandi Muneeswaran or Ali Akbari-Fakhrabadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muneeswaran, M., Akbari-Fakhrabadi, A., Gracia-Pinilla, M.A. et al. Structural, electrical, ferroelastic behavior, and multiferroic properties of BiFeO3. J Mater Sci: Mater Electron 31, 13141–13149 (2020). https://doi.org/10.1007/s10854-020-03865-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03865-y

Navigation