Skip to main content

Advertisement

Log in

A high-performance supercapacitor based on cerium molybdate nanoparticles anchored on N, P co-doped reduced graphene oxide nanocomposite as the electrode

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Here, cerium (IV) molybdate nanoparticles (CeMo2O8) are anchored on the surface of an N, P co-doped reduced graphene oxide nanocomposite by a stepwise sonochemical approach and further investigated as an electrode for supercapacitors. The cerium (IV) molybdate/N, P co-doped reduced graphene oxide symmetric electrode exhibits an outstanding specific capacitance of 638 F g−1 at 2 mV s−1. The prominent electrochemical capacitive properties of nanocomposite electrode are attributed to the merits of high electrically conductive N, P co-doped reduced graphene oxide and short ion transport channels provided by CeMo2O8 nanoparticles together with the synergistic effect between the two combinations. Furthermore, the symmetric supercapacitor based on CeMo2O8/N, P co-doped reduced graphene oxide electrodes demonstrates a high energy density (29.7 W h kg−1 at 500 W kg−1), good power density (16,000 W kg−1 at 14.3 W h kg−1), and remarkable cycling stability (102.9% capacitance retention after 4000 cycles at 100 mV s−1). The results clearly show that co-doping small amounts of N and P onto the reduced graphene oxide, through a simple impregnating method, significantly improves the supercapacitive performance of the nanocomposite electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. W.K. Chee, H.N. Lim, Z. Zainal, N.M. Huang, I. Harrison, Y. Andou, Flexible graphene-based supercapacitors: a review. J. Phys. Chem. C 120, 4153–4172 (2016)

    Article  CAS  Google Scholar 

  2. C.D. Lokhande, D.P. Dubal, O.S. Joo, Metal oxide thin film-based supercapacitors. Curr. Appl. Phys. 11, 255–270 (2011)

    Article  Google Scholar 

  3. Z. Chen, D. Yu, W. Xiong, P. Liu, Y. Liu, L. Dai, Graphene-based nanowire supercapacitors. Langmuir 30, 3567–3571 (2014)

    Article  CAS  Google Scholar 

  4. X. Chen, H. Wang, H. Yi, X. Wang, Anthraquinone on porous carbon nanotubes with improved supercapacitor performance. J. Phys. Chem. C 118, 8262–8270 (2014)

    Article  CAS  Google Scholar 

  5. W. Chen, C. Xia, H.N. Alshareef, One-step electrodeposited nickel cobalt sulfide nanosheet. Arrays for high-performance asymmetric supercapacitors. ACS Nano 8, 9531–9541 (2014)

    Article  CAS  Google Scholar 

  6. X. Chen, M. Cheng, D. Chen, R. Wang, Shape-controlled synthesis of Co2P nanostructures and their application in supercapacitors. ACS Appl. Mater. Interfaces 8, 3892–3900 (2016)

    Article  CAS  Google Scholar 

  7. A. Hodaei, A.S. Dezfuli, H.R. Naderi, A high-performance supercapacitor based on N-doped TiO2 nanoparticles. J. Mater. Sci. 29, 14596–14605 (2018)

    CAS  Google Scholar 

  8. Y. Huang, J. Liang, Y. Chen, An overview of the applications of graphene-based materials in supercapacitors. Small 8, 1805–1834 (2012)

    Article  CAS  Google Scholar 

  9. J.X. Feng, S.H. Ye, X.F. Lu, Y.X. Tong, G.R. Li, Asymmetric paper supercapacitor based on amorphous porous Mn3O4 negative electrode and Ni(OH)2 positive electrode: a Novel and high-performance flexible electrochemical energy storage device. ACS Appl. Mater. Interfaces 7, 11444–11451 (2015)

    Article  CAS  Google Scholar 

  10. C. Feng, J. Zhang, Y. He, C. Zhong, W. Hu, L. Liu, Y. Deng, Sub 3 nm Co3O4 nanofilms with enhanced supercapacitor properties. ACS Nano 9, 1730–1739 (2015)

    Article  CAS  Google Scholar 

  11. C. Cui, J. Xu, L. Wang, D. Guo, M. Mao, J. Ma, T. Wang, Growth of NiCo2O4@MnMoO4nanocolumn arrays with superior pseudocapacitors properties. ACS Appl. Mater. Interfaces 8, 8568–8575 (2016)

    Article  CAS  Google Scholar 

  12. H. Cao, N. Wu, Y. Liu, S. Wang, W. Du, J. Liu, Facile synthesis of rod-like manganese molybdate crystallines with two-dimensional nanoflakes for supercapacitor application. Electrochim. Acta 225, 605–613 (2017)

    Article  CAS  Google Scholar 

  13. H. Wan, J. Jiang, X. Ji, L. Miao, L. Zhang, K. Xu, H. Chen, Y. Ruan, Rapid microwave-assisted synthesis NiMoO4H2O nanoclusters for supercapacitors. Mater. Lett. 108, 164–167 (2013)

    Article  CAS  Google Scholar 

  14. Y.P. Gao, K.J. Huang, C.X. Zhang, S.S. Song, X. Wu, High-performance symmetric supercapacitor based on flower-like zinc molybdate. J. Alloys Compd. 731, 1151–1158 (2018)

    Article  CAS  Google Scholar 

  15. K.A. Yasakau, J. Tedim, M.L. Zheludkevich, R. Drumm, M. Shem, M. Wittmar, M. Veith, M.G.S. Ferreira, Cerium molybdate nanowires for active corrosion protection of aluminum alloys. Corros. Sci. 58, 41–51 (2012)

    Article  CAS  Google Scholar 

  16. Z.S. Wu, G. Zhou, L.C. Yin, W. Ren, F. Li, H.M. Cheng, Graphene/metal oxide composite electrode materials for energy storage. Nano Energy 1, 107–131 (2012)

    Article  CAS  Google Scholar 

  17. R.B. Rakhi, W. Chen, D. Cha, H.N. Alshareef, High performance supercapacitors using metal oxide anchored graphene nanosheet electrodes. J. Mater. Chem. 21, 16197–16204 (2011)

    Article  CAS  Google Scholar 

  18. H.R. Naderi, M.R. Ganjali, A.S. Dezfuli, High-performance supercapacitor based on reduced graphene oxide decorated with europium oxide nanoparticles. J. Mater. Sci. 29, 3035–3044 (2017)

    Google Scholar 

  19. D.A.C. Brownson, D.K. Kampouris, C.E. Banks, An overview of graphene in energy production and storage applications. J. Power Sources 196, 4873–4885 (2011)

    Article  CAS  Google Scholar 

  20. H.J. Choia, S.M. Junga, J.M. Seoa, D.W. Chang, L. Daic, J.B. Baek, Graphene for energy conversion and storage in fuel cells and supercapacitors. Nano Energy 1, 534–551 (2012)

    Article  Google Scholar 

  21. H.R. Naderi, P. Norouzi, M.R. Ganjali, Electrochemical study of a novel high-performance supercapacitor based on MnO2/nitrogen-doped graphene nanocomposite. Appl. Surf. Sci. 366, 552–560 (2016)

    Article  CAS  Google Scholar 

  22. Y. Zhou, R. Ma, S.L. Candelaria, J. Wang, Q. Liu, E. Uchaker, P. Li, Y. Chen, G. Cao, Phosphorus/sulfur Co-doped porous carbon with enhanced specific capacitance for supercapacitor and improved catalytic activity for oxygen reduction reaction. J. Power Sources 314, 39–48 (2016)

    Article  CAS  Google Scholar 

  23. T. Wang, J. Zhang, Q. Hou, S. Wang, Utilization of nutrient rich duckweed to create N, P Co-doped porous carbons for high performance supercapacitors. J. Alloys Compd. 771, 1009–1017 (2019)

    Article  CAS  Google Scholar 

  24. P.A. Basnayak, A. Kumar, M.K. Ram, E.K. Stefanakos, V.G. Bairi, S.K. Ramasahayam, T. Viswanathan, High performance asymmetric supercapacitors based on dual phosphorus (P) and nitrogen (N) co-doped carbon and graphene-polyaniline electrodes. ECS J. Solid State Sci. Technol. 6, 3168–3172 (2017)

    Article  Google Scholar 

  25. N. Parveen, M.O. Ansari, S.A. Ansari, M.H. Cho, Simultaneous sulfur doping and exfoliation of graphene from graphite using electrochemical method for supercapacitor electrode materials. J. Mater. Chem. A 4, 233–240 (2016)

    Article  CAS  Google Scholar 

  26. N.I. Zaaba, K.L. Foo, U. Hashim, S.J. Tanb, W.-W. Liu, C.H. Voon, Synthesis of graphene oxide using modified hummers method: solvent influence. Procedia Eng 184, 469–477 (2017)

    Article  CAS  Google Scholar 

  27. S.M.B.M. Hosseini, S.M. Baizaee, H.R. Naderi, A.D. Kordi, Excimer laser assisted very fast exfoliation and reduction of graphite oxide at room temperature under air ambient for supercapacitors electrode. Appl. Surf. Sci. 427, 507–516 (2018)

    Article  Google Scholar 

  28. M. Dong, Q. Lin, H. Sun, D. Chen, T. Zhang, Q. Wu, S. Li, Synthesis of cerium molybdate hierarchical architectures and their novel photocatalytic and adsorption performances. Cryst. Growth Des. 11, 5002–5009 (2011)

    Article  CAS  Google Scholar 

  29. S. Brunauer, P.H. Emmett, E. Teller, Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309–319 (1938)

    Article  CAS  Google Scholar 

  30. E.P. Barrett, L.G. Joyner, P.P. Halenda, The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 73, 373–380 (1951)

    Article  CAS  Google Scholar 

  31. D. Channei, B. Inceesungvorn, N. Wetchakun, S. Ukritnukun, A. Nattestad, J. Chen, S. Phanichphant, Photocatalytic degradation of methyl orange by CeO2 and Fe–doped CeO2 films under visible light irradiation. Sci. Rep. 4, 5757–5765 (2014)

    Article  CAS  Google Scholar 

  32. R. Karthik, J.V. Kumar, S.M. Chen, C. Karuppiah, Y.H. Cheng, V. Muthuraj, A study of electrocatalytic and photocatalytic activity of cerium molybdate nanocubes decorated graphene oxide for the sensing and degradation of antibiotic drug: Chloramphenicol. ACS Appl. Mater. Interfaces 9, 6547–6559 (2017)

    Article  CAS  Google Scholar 

  33. A.S. Dezfuli, M.R. Ganjali, H.R. Naderi, P. Norouzi, A high performance supercapacitor based on a ceria/graphene nanocomposite synthesized by a facile sonochemical method. RSC Adv. 5, 46050–46058 (2015)

    Article  CAS  Google Scholar 

  34. E. Barsoukov, J.R. Macdonald, Impedance spectroscopytheory, experiment, and applications, 2nd edn. (Wiley, New York, 2005)

    Book  Google Scholar 

  35. P.M. Biesheuvel, Y. Fu, M.Z. Bazant, Diffuse charge and Faradaic reactions in porous electrodes. Phys. Rev. E 83, 061507 (2011)

    Article  CAS  Google Scholar 

  36. X. Xu, J. Shen, N. Li, M. Ye, Microwave-assisted synthesis of graphene/CoMoO4 nanocomposites with enhanced supercapacitor performance. J. Alloys Compd. 616, 58–65 (2014)

    Article  CAS  Google Scholar 

  37. X. Xia, W. Lei, Q. Hao, W. Wang, X. Wang, One-step synthesis of CoMoO4/graphene composites with enhanced electrochemical properties for supercapacitors. Electrochim. Acta 99, 253–261 (2013)

    Article  CAS  Google Scholar 

  38. M.C. Liu, L.B. Kong, C. Lu, X.M. Li, Y.C. Luo, L. Kang, Facile fabrication of CoMoO4 nanorods as electrode material for electrochemical capacitors. Mater. Lett. 94, 197–200 (2013)

    Article  CAS  Google Scholar 

  39. B. Senthilkumar, R.K. Selvan, Hydrothermal synthesis and electrochemical performances of 1.7 V NiMoO4.xH2O||FeMoO4 aqueous hybrid supercapacitor. J. Colloid Interface Sci. 426, 280–286 (2014)

    Article  CAS  Google Scholar 

  40. B. Senthilkumar, D. Meyrick, Y.S. Lee, R.K. Selvan, Synthesis and improved electrochemical performances of nano β-NiMoO4–CoMoO4.xH2O composites for asymmetric supercapacitors. RSC Adv. 3, 16542–16548 (2013)

    Article  CAS  Google Scholar 

  41. M.C. Liu, L.B. Kong, C. Lu, X.J. Ma, X.M. Li, Y.C. Luo, L. Kang, Design and synthesis of CoMoO4–NiMoO4.xH2O bundles with improved electrochemical properties for supercapacitors. J. Mater. Chem. A1, 1380–1387 (2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdollah Yari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yari, A., Heidari Fathabad, S. A high-performance supercapacitor based on cerium molybdate nanoparticles anchored on N, P co-doped reduced graphene oxide nanocomposite as the electrode. J Mater Sci: Mater Electron 31, 13051–13062 (2020). https://doi.org/10.1007/s10854-020-03855-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03855-0

Navigation