Skip to main content
Log in

Effect of strontium doping on the structural and dielectric properties of YCrO3

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Study of multiferroic Y1−xSrxCrO3 (x = 0.0, 0.1) chromite obtained through solid-state reaction technique is presented. The Rietveld refinement of the XRD profile shows the orthorhombic Pbnm crystal symmetry of the system. The bandgaps of YCrO3 and Y0.9Sr0.1CrO3 samples are found as ~ 2.31 and ~ 2.23 eV, respectively. The FTIR spectra peaks show a red shift in the case of Sr2+ ion doping in YCrO3 indicating the reduction in cell volume. Two dielectric relaxation peaks are observed in the YCrO3 , whereas Y0.9Sr0.1CrO3 shows only one broad peak that is found to be extremely frequency dependent. The dielectric peak maxima shifts to higher temperatures with an increase in frequency in both the samples. This kind of dielectric variation is indicating a relaxor type of dielectric material. It is noted that the observed conductive process is closely associated with thermally stimulated oxygen vacancies. The PE loops of both the samples have completely round shape with maximum polarization (Pmax) being observed at zero electric field. For YCrO3, the mechanism of leakage current conduction is in good agreement with the Ohmic conduction mechanism, whereas Y0.9Sr0.1CrO3 agrees well with space charge-limited conduction mechanism. The decreased bandgap and leakage current makes the Sr2+ ion doping beneficial for various electronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. D. Khomskii, Physics 2, 20 (2009)

    Google Scholar 

  2. P. Saxena, A. Kumar, P. Sharma, D. Varshney, J. Alloys Compd. 682, 418–423 (2016)

    CAS  Google Scholar 

  3. P. Sharma, P. Saxena, A. Kumar, D. Varshney, J. Alloys Compd. 706, 609–615 (2017)

    CAS  Google Scholar 

  4. K. Ramesha, A. Llobet, T. Proffen, C.R. Serrao, C.N.R. Rao, J. Phys.: Condens. Matter 19, 102202 (2007)

    Google Scholar 

  5. S. Tiwari, M. Saleem, A. Mishra, D. Varshney, J. Supercond. Nov. Magn. 32, 2521–2531 (2019)

    CAS  Google Scholar 

  6. K. Yoshii, J. Solid State Chem. 159, 204–208 (2001)

    CAS  Google Scholar 

  7. P. Gupta, R. Bhargava, P. Poddar, J. Phys. D Appl. Phys. 48, 025004 (2015)

    Google Scholar 

  8. X. Lu, J. Xu, L. Yang, C. Zhou, Y.Y. Zhao, C. Yuan, Q. Li, G. Chen, H. Wang, J. Mater. 2, 87–93 (2016)

    Google Scholar 

  9. Y. Su, J. Zhang, Z. Feng, L. Li, B. Li, Y. Zhou, Z. Chen, S. Cao, J. Appl. Phys. 108, 013905 (2010)

    Google Scholar 

  10. M. Taheri, R.K. Kremer, S. Trudel, F.S. Razavi, J. Appl. Phys. 118, 124306 (2015)

    Google Scholar 

  11. A. Durn, A.M. Arvalo-Lpez, E. Castillo-Martnez, M. Garca-Guaderrama, E. Moran, M.P. Cruz, F. Fernndez, M.A. Alario-Franco, J. Solid State Chem. 183, 1863–1871 (2010)

    Google Scholar 

  12. P.W. Stephens, J. Appl. Crystallogr. 32, 281–289 (1999)

    CAS  Google Scholar 

  13. P.V. Coutinho, F. Cunha, P. Barrozo, Solid State Commun. 252, 59–63 (2017)

    CAS  Google Scholar 

  14. P. Saxena, D. Varshney, AIP Conf. Proc. 1942, 110040–110044 (2018)

    Google Scholar 

  15. S.M. El-Sheikh, M.M. Rashad, J. Alloys Compd. 496, 723–732 (2010)

    CAS  Google Scholar 

  16. G. Rosenbaum, K.C. Holmes, J. Witz, Nature 230, 434–437 (1971)

    CAS  Google Scholar 

  17. C.J. Bartel, C. Sutton, B.R. Goldsmith, R. Ouyang, C.B. Musgrave, L.M. Ghiringhelli, M. Scheffler, Sci. Adv. 5, 1–19 (2019)

    Google Scholar 

  18. R.D. Shannon, Acta Cryst. 32, 751 (1976)

    Google Scholar 

  19. R.S. Pandav, R.P. Patil, S.S. Chavan, I.S. Mulla, P.P. Hankare, J. Magn. Magn. Mater. 417, 407–412 (2016)

    CAS  Google Scholar 

  20. D. Louer, L.B. McCusker, R.B. Von Dreele, D.E. Cox, J. Appl. Cryst. 32, 36–50 (1999)

    Google Scholar 

  21. A. Durán, E. Verdin, R. Escamilla, F. Morales, R. Escudero, Mater. Chem. Phys. 133, 1011–1017 (2012)

    Google Scholar 

  22. R.S. Pavlov, V.B. Marzá, J.B. Carda, J. Mater. Chem. 12, 2825–2832 (2002)

    CAS  Google Scholar 

  23. P. Kubelka, F. Munk, J. Tech. Phys. 12, 593 (1931)

    Google Scholar 

  24. S. Krishnan, C.S. Suchand Sandeep, R. Philip, N. Kalarikkal, Chem. Phys. Lett. 529, 59–63 (2012)

    CAS  Google Scholar 

  25. T. Ahmad, I.H. Lone, New J. Chem. 40, 3216–3224 (2016)

    CAS  Google Scholar 

  26. P. Saxena, A. Yadav, P. Choudhary, M.D. Varshney, A. Mishra, AIP Conf. Proc. 2100, 3–7 (2019)

    Google Scholar 

  27. D.S. Patil, N. Venkatramani, V.K. Rohatgi, J. Mater. Sci. Lett. 7, 413–414 (1988)

    CAS  Google Scholar 

  28. Y. Sharma, S. Sahoo, W. Perez, S. Mukherjee, R. Gupta, A. Garg, R. Chatterjee, R.S. Katiyar, J. Appl. Phys. 115, 183907 (2014)

    Google Scholar 

  29. W.P. Doyle, P. Eddy, Spectrochim. Acta 23, 1903–1907 (1967)

    CAS  Google Scholar 

  30. F. Rehman, H.B. Jin, C. Niu, A. Bukhtiar, Y.J. Zhao, J.B. Li, Ceram. Int. 42, 2806–2812 (2016)

    CAS  Google Scholar 

  31. A.K.T. RakeshShukla, F.N. Sayed, V. Grover, S.K. Deshpande, Inorg. Chem. 53, 10101–10111 (2014)

    Google Scholar 

  32. A.A. Bokov, Z.G. Ye, Front Ferroelectr. A Spec. Issue J. Mater. Sci. 41, 31–52 (2006)

    CAS  Google Scholar 

  33. V. Grover, R. Shukla, D. Jain, S.K. Deshpande, A. Arya, C.G.S. Pillai, A.K. Tyagi, Chem. Mater. 24, 2186–2196 (2012)

    CAS  Google Scholar 

  34. A.K. Mall, B. Paul, A. Garg, R. Gupta, J. Raman Spectrosc. 51, 537–545 (2020)

    CAS  Google Scholar 

  35. R. Sinha, S. Basu, A.K. Meikap, Phys. E Low-Dimensional Syst. Nanostructures 113, 194–201 (2019)

    CAS  Google Scholar 

  36. W.Q. Cao, L.F. Xu, M.M. Ismail, L.L. Huang, Mater. Sci. Pol. 34, 322–329 (2016)

    CAS  Google Scholar 

  37. C. Bharti, A. Dutta, S. Shannigrahi, S.N. Choudhary, R.K. Thapa, T.P. Sinha, J. Electron Spectros. Relat. Phenomena 169, 80–85 (2009)

    CAS  Google Scholar 

  38. R. Sinha, S. Kundu, S. Basu, A.K. Meikap, Solid State Sci. 60, 75–84 (2016)

    CAS  Google Scholar 

  39. S. Mahboob, G. Prasad, G.S. Kumar, Bull. Mater. Sci. 29, 347–355 (2006)

    CAS  Google Scholar 

  40. J. Singh, A.T. Kalghatgi, J. Parui, S.B. Krupanidhi, J. Appl. Phys. 108, 054106 (2010)

    Google Scholar 

  41. K.M. Rabe, C.H. Ahn, J.-M. Triscone, Topics in Applied Physics, vol. 105 Physics of Ferroelectrics (2007)

  42. R.N. Bhowmik, A.K. Sinha, J. Magn. Magn. Mater. 421, 120–131 (2017)

    CAS  Google Scholar 

  43. Y. Sharma, P. Misra, D.G.B. Diestra, R. Chatterjee, R.S. Katiyar, Mater. Res. Bull. 68, 49–53 (2015)

    CAS  Google Scholar 

  44. Z. Tang, Z. Zhang, J. Chen, S. Zhao, J. Alloys Compd. 696, 1–8 (2017)

    CAS  Google Scholar 

  45. P. Choudhary, P. Saxena, A. Yadav, A.K. Sinha, V.N. Rai, M.D. Varshney, A. Mishra, J. Supercond. Nov. Magn. 32, 2639–2645 (2019)

    CAS  Google Scholar 

Download references

Acknowledgements

UGC-DAE-CSR, as an institute, is acknowledged for extending its facilities for sample characterization. Thanks to Dr. A. K. Sinha of RRCAT, Indore, India for providing SXRD facility. Dr. M. Gupta, Dr. D. M. Phase, Dr. U. P. Deshpande, Dr. V. R. Reddy of UGC-DAE-CSR, Indore, India, and Dr. Pratibha Sharma of School of Chemical Science, Devi Ahilya University, Indore, India are gratefully acknowledged for measurements and fruitful discussions. The authors are also thankful to Late Dr. Dinesh Varshney for his support and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pallavi Saxena.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saxena, P., Choudhary, P., Yadav, A. et al. Effect of strontium doping on the structural and dielectric properties of YCrO3. J Mater Sci: Mater Electron 31, 12444–12454 (2020). https://doi.org/10.1007/s10854-020-03791-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03791-z

Navigation