Skip to main content
Log in

Improve piezoelectricity in BaTiO3-based ceramics with large electrostriction coefficient

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A new solid solution of (1 − x)Ba0.86Sr0.14TiO3 − xBa0.86Sr0.14HfO3 (abbreviated as BST − xBSH, 0.00 ≤ x ≤ 0.10) was prepared to search for a high-performance lead-free piezoelectric ceramics. Through the chemical of Hf tailoring, the enhanced electrical property (e.g., d33 ~ 650 pC/N, εr ~ 4455, tanδ ~ 0.024, strain ~ 0.151%, and d33* ~ 502 pm/V) and large electrostriction coefficient (Q33 = 0.0528 m4/C2) are obtained in the ceramics with x = 0.06. The relationship between piezoelectric performance and electrostrictive coefficient is studied in detail. It’s worth noting that the variation of Q33 is highly matched with d33 because the electrostrictive effect plays a vital role in the piezoelectricity of ferroelectric materials. Therefore, it is very promising to increase the piezoelectricity by modifying electrostriction coefficient in lead-free materials for electromechanical actuator applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig.2
Fig.3
Fig.4
Fig.5
Fig.6
Fig.7
Fig.8
Fig.9

Similar content being viewed by others

References

  1. F.Z. Yao, K. Wang, W. Jo, K.G. Webber, T.P. Comyn, J.X. Ding, L.Q. Cheng, M.P. Zheng, Y.D. Hou, J.F. Li, Adv. Funct. Mater. 26, 1217–1224 (2016)

    Article  CAS  Google Scholar 

  2. W.F. Liu, X.B. Ren, Phys. Rev. Lett. 103, 257602 (2009)

    Article  Google Scholar 

  3. J.G. Wu, D.Q. Xiao, J.G. Zhu, Chem. Rev. 115, 2559–2595 (2015)

    Article  CAS  Google Scholar 

  4. K.T.P. Seifert, W. Jo, J. Rӧdel, J. Am. Ceram. Soc. 93, 1392–1396 (2010)

    CAS  Google Scholar 

  5. Y. Tian, L.L. Wei, X.L. Chao, Z.H. Liu, Z.P. Yang, J. Am. Ceram. Soc. 96, 496–502 (2013)

    CAS  Google Scholar 

  6. A.K. Kalyani, K. Brajesh, A. Senyshyn, R. Rajeev, Appl. Phys. Lett. 104, 252906 (2014)

    Article  Google Scholar 

  7. L.F. Zhu, B.P. Zhang, L. Zhao, J.F. Li, J. Mater. Chem. C 2, 4764–4771 (2014)

    Article  CAS  Google Scholar 

  8. K. Chen, J. Ma, J. Wu, C.Y. Shi, B. Wu, J. Mater. Sci. 30, 18336–18341 (2019)

    CAS  Google Scholar 

  9. C.L. Zhao, H.J. Wu, F. Li, Y.Q. Cai, Y. Zhang, D.S. Song, J.G. Wu, X. Lyu, J. Yin, D.Q. Xiao, J.G. Zhu, S.J. Pennycook, J. Am. Chem. Soc. 140, 15252–15260 (2018)

    Article  CAS  Google Scholar 

  10. H. Tao, H.J. Wu, Y. Liu, Y. Zhang, J.G. Wu, F. Li, X. Lyu, C.L. Zhao, D.Q. Xiao, J.G. Zhu, S.J. Pennycook, J. Am. Chem. Soc. 141, 13987 (2019)

    Article  CAS  Google Scholar 

  11. C.L. Zhao, W.J. Wu, H. Wang, J.G. Wu, J. Appl. Phys. 119, 024108 (2016)

    Article  Google Scholar 

  12. D.Y. Liang, X.H. Zhu, Y. Zhang, W. Shi, J.L. Zhu, Ceram. Int. 41, 8261–8266 (2015)

    Article  CAS  Google Scholar 

  13. F. Li, L. Jin, Z. Xu, S.J. Zhang, Appl. Phys. Rev. 1, 1931–9401 (2014)

    Google Scholar 

  14. L.F. Zhu, B.P. Zhang, L. Zhao, S. Li, Y. Zhou, X.C. Shi, N. Wang, J. Eur. Ceram. Soc. 36, 1017–1024 (2016)

    Article  CAS  Google Scholar 

  15. T. Badapanda, S.K. Rout, L.S. Cavalcante, J.C. Sczancoski, S. Panigrahi, T.P. Sinh, E. Longo, Mater. Chem. Phys. 121, 147–153 (2010)

    Article  CAS  Google Scholar 

  16. W. Cai, C.L. Fu, J.C. Gao, Z.B. Lin, X.L. Deng, Ceram. Int. 38, 3367–3375 (2012)

    Article  CAS  Google Scholar 

  17. S. Halder, T. Schneller, R. Waser, S.B. Majumder, Thin Solid Films 516, 4970–4976 (2008)

    Article  CAS  Google Scholar 

  18. L. Jin, F. Li, S.J. Zhang, J. Am. Ceram. Soc. 97, 1–27 (2014)

    Article  CAS  Google Scholar 

  19. J.G. Hao, W. Li, J.W. Zhai, H. Chen, Mater. Sci. Eng. R 135, 1–57 (2019)

    Article  Google Scholar 

  20. B. Wu, J. Ma, W.J. Wu, M. Chen, J. Mater. Chem. C 8, 2838–2846 (2020)

    Article  CAS  Google Scholar 

  21. D.M. Lin, K.W. Kwok, H.L.W. Chan, J. Alloys Compd. 461, 273–278 (2008)

    Article  CAS  Google Scholar 

  22. F.Z. Yao, K. Wang, W. Jo, J.S. Lee, J.F. Li, J. Appl. Phys. 116, 114102 (2014)

    Article  Google Scholar 

  23. W.J. Wu, J. Ma, N.N. Wang, C.Y. Shi, K. Chen, Y.L. Zhu, M. Chen, B. Wu, J. Alloys Compd. 814, 152240 (2020)

    Article  CAS  Google Scholar 

  24. J. Fu, R.Z. Zuo, Acta Mater. 61, 3687–3694 (2013)

    Article  CAS  Google Scholar 

  25. X. Lv, J.G. Wu, J. Mater. Chem. C. 7, 2037–2048 (2019)

    Article  CAS  Google Scholar 

  26. Y.L. Huang, C.L. Zhao, J. Yin, X. Lv, J. Ma, J.G. Wu, J. Mater. Chem. A. 7, 17366–17375 (2019)

    Article  CAS  Google Scholar 

  27. Y.L. Huang, C.L. Zhao, J.G. Wu, Adv. Electron. Mater. 4, 1800075 (2018)

    Article  Google Scholar 

  28. C.B. DiAntonio, F. Williams, S.M. Pilgrim, I.E.E.E. Trans, Ultrason. Ferroelectr. Freq. Control 48, 1532–1538 (2001)

    Article  CAS  Google Scholar 

  29. M.B. Rauls, W. Dong, J.E. Huber, C.S. Lynch, Acta Mater. 59, 2713–2722 (2011)

    Article  CAS  Google Scholar 

  30. L.E. Cross, S.J. Jang, R.E. Newnham, S. Nomura, K. Uchino, Ferroelectrics 23, 187–191 (1980)

  31. J.F. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices Oxford University Press (Oxford University Press, Oxford, 1957), p. 1957

    Google Scholar 

  32. F. Li, L. Jin, Z. Xu, D.W. Wang, S.J. Zhang, Appl. Phys. Lett. 102, 152910 (2013)

    Article  Google Scholar 

  33. H.S. Han, W. Jo, J.K. Kang, W.A. Chang, L.W. Kim, K.K. Ahn, J.S. Lee, J. Appl. Phys. 113, 154102 (2013)

    Article  Google Scholar 

  34. J.G. Hao, Z.J. Xu, R.Q. Chu, W. Li, J. Du, J. Mater. Sci. 50, 5328–5336 (2015)

    Article  CAS  Google Scholar 

  35. D.L. Wang, Z.H. Jiang, B. Yang, S.T. Zhang, M.F. Zhang, F.F. Guo, W.W. Cao, J. Mater. Sci. 49, 62–69 (2014)

    Article  CAS  Google Scholar 

  36. L. Jin, W.T. Luo, L. Hou, Y. Tian, Q.Y. Hu, L. Wang, L. Zhang, X. Lu, H.L. Du, X.Y. Wei, J. Eur. Ceram. Soc. 39, 295–304 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support by the National Science Foundation of China (NSFC Nos. 51702028, 51702029) and the Fundamental Research Funds for the Central Universities, Southwest Minzu University (No. 2019NYB03).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Ma or Bo Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, K., Ma, J., Wu, J. et al. Improve piezoelectricity in BaTiO3-based ceramics with large electrostriction coefficient. J Mater Sci: Mater Electron 31, 12292–12300 (2020). https://doi.org/10.1007/s10854-020-03774-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03774-0

Navigation