Skip to main content

Advertisement

Log in

Hierarchical porous carbon derived from acai seed biowaste for supercapacitor electrode materials

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Creating energy storage devices from biomass waste has great scientific and industrial significance by providing an eco-friendly and sustainable alternative to reuse biowaste. This study demonstrates the production of high-performance supercapacitor electrodes using acai seed as a precursor for creating carbon materials. Porous carbons were synthesized by carbonization and subsequent KOH activation to generate microporosity then mesoporosity upon further activation. The materials displayed large specific surface areas and total pore volumes, with tunable pore structures depending on the degree of activation. The biomass-derived electrodes exhibited high specific capacitances of 346 F g−1 at 1 mA cm−2 and good electrochemical stability in which 88% of the initial capacitance was retained after 5000 charges/discharges cycles at 7 mA cm−2 in 1 M KOH electrolyte. These results place these materials among the best biomass-derived supercapacitors reported thus far. This study provides a great alternative for the management of the large-scale biowaste, acai seed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. Li, K. Han, J. Qi, Z. Teng, M. Li, M. Wang, Biomass-derived 3D hierarchical porous carbon by two-step activation method for supercapacitor. J. Mater. Sci. 30, 19415–19425 (2019)

    CAS  Google Scholar 

  2. M. Sevilla, N. Diez, G.A. Ferrero, A.B. Fuertes, Sustainable supercapacitor electrodes produced by the activation of biomass with sodium thiosulfate. Energy Storage Mater. 18, 356–365 (2019)

    Google Scholar 

  3. W. Shi, B. Chang, H. Yin, S. Zhang, B. Yang, X. Dong, Crab shell-derived honeycomb-like graphitized hierarchically porous carbons for satisfactory rate performance of all-solid-state supercapacitors. Sustain. Energy Fuels 3, 1201–1214 (2019)

    CAS  Google Scholar 

  4. H. Yang, S. Ye, J. Zhou, T. Liang, Biomass-derived porous carbon materials for supercapacitor. Front. Chem. 7, 274–291 (2019)

    CAS  Google Scholar 

  5. Z. Bi, Q. Kong, Y. Cao, G. Sun, F. Su, X. Wei, X. Li, A. Ahmad, L. Xie, C.-M. Chen, Biomass-derived porous carbon materials with different dimensions for supercapacitor electrodes: a review. J. Mater. Chem. A 7, 16028–16045 (2019)

    CAS  Google Scholar 

  6. E.D. Ángel-Meraz, H.J. Orantes-Flores, E.R. Morales, P.Y. Sevilla-Camacho, R. Castillo-Palomera, The use of activated carbon from cofee endocarp for the manufacture of supercapacitors. J. Mater. Sci. 31, 7547–7554 (2020)

    Google Scholar 

  7. J. Xu, Q. Gao, Y. Zhang, Y. Tan, W. Tian, L. Zhu, L. Jiang, Preparing two-dimensional microporous carbon from pistachio nutshell with high areal capacitance as supercapacitor materials. Sci. Rep. 4, 5540–5551 (2015)

    Google Scholar 

  8. H. Ma, Z. Chen, X. Wang, Z. Liu, X. Liu, A simple route for hierarchically porous carbon derived from corn straw for supercapacitor application. J. Renew. Sustain. Energy 11, 24102–24106 (2019)

    Google Scholar 

  9. J. Xu, N. Yuan, J.M. Razal, Y. Zheng, X. Zhou, J. Ding, K. Cho, S. Ge, R. Zhang, Y. Gogotsi, R.H. Baughman, Temperature-independent capacitance of carbon-based supercapacitor from −100 to 60 °C. Energy Storage Mater. 22, 323–329 (2019)

    Google Scholar 

  10. S. Ahmed, M. Rafat, A. Ahmed, Nitrogen doped activated carbon derived from orange peel for supercapacitor application. Adv. Nat. Sci. Nanosci. Nanotechnol. 9, 35008–35016 (2018)

    Google Scholar 

  11. Q. Wang, M. Zhou, Y. Zhang, M. Liu, W. Xiong, S. Liu, Large surface area porous carbon materials synthesized by direct carbonization of banana peel and citrate salts for use as high-performance supercapacitors. J. Mater. Sci. 29, 4294–4300 (2018)

    CAS  Google Scholar 

  12. P. Yu, Y. Liang, H. Dong, H. Hu, S. Liu, L. Peng, M. Zheng, Y. Xiao, Y. Liu, Rational synthesis of highly porous carbon from waste bagasse for advanced supercapacitor application. ACS Sustain. Chem. Eng. 6, 5325–15332 (2018)

    Google Scholar 

  13. X. Qu, Y. Liu, C. Zhang, A. Zhu, T. Wang, Y. Tian, J. Yu, B. Xing, G. Huang, Y. Cao, Effect of different pretreatment methods on sesame husk-based activated carbon for supercapacitors with aqueous and organic electrolytes. J. Mater. Sci. 30, 7873–7882 (2019)

    CAS  Google Scholar 

  14. K.M. Vighnesha, A. Shruthi, N. Sandhya, D.N. Sangeetha, M. Selvakumar, Synthesis and characterization of activated carbon/conducting polymer composite electrode for supercapacitor applications. J. Mater. Sci. 29, 914–921 (2018)

    CAS  Google Scholar 

  15. J.S. Reis, R.O. Araujo, V.M.R. Lima, L.S. Queiroz, C.E.F. da Costa, J.J.R. Pardauil, J.S. Chaar, G.N. Rocha Filho, L.K.C. Souza, Combustion properties of potential Amazon biomass waste for use as fuel. J. Therm. Anal. Calorim. 138, 3535–3539 (2019)

    CAS  Google Scholar 

  16. S. Lv, L. Ma, Q. Zhou, X. Shen, H. Tong, Three-dimensional self-doped hierarchical porous mussel nacre-derived carbons for high performance supercapacitors. J. Mater. Sci. 30, 14382–14390 (2019)

    CAS  Google Scholar 

  17. L. Borchardt, D. Leistenschneider, J. Haase, M. Dvoyashkin, Revising the concept of pore hierarchy for ionic transport in carbon materials for supercapacitors. Adv. Energy Mater. 8(24), 1–8 (2018)

    Google Scholar 

  18. G. Huang, Q. Geng, W. Kang, Y. Liu, Y. Li, B. Xing, Q. Liu, C. Zhang, Hierarchical porous carbon with optimized mesopore structure and nitrogen doping for supercapacitor electrodes. Microporous Mesoporous Mater. 288, 109576 (2019)

    CAS  Google Scholar 

  19. Y. Wen, L. Zhang, J. Liu, X. Wen, X. Chen, J. Ma, T. Tang, E. Mijowska, Hierarchical porous carbon sheets derived on a MgO template for high-performance supercapacitor applications. Nanotechnology 30(29), 295703–295713 (2019)

    CAS  Google Scholar 

  20. A.S. Ello, L.K.C. Souza, A. Trokourey, M. Jaroniec, Coconut shell-based microporous carbons for CO2 capture. Microporous Mesoporous Mater. 180, 280–283 (2013)

    CAS  Google Scholar 

  21. A.S. Ello, L.K.C. Souza, A. Trokourey, M. Jaroniec, Development of microporous carbons for CO2 capture by KOH activation of African palm shells. J. CO2 Util. 2, 35–38 (2013)

    CAS  Google Scholar 

  22. L.K.C. Souza, N.P. Wickramaratne, A.S. Ello, M.J.F. da Costa, C.E.F. Costa, M. Jaroniec, Enhancement of CO2 adsorption on phenolic resin-based mesoporous carbons by KOH activation. Carbon 65, 334–340 (2013)

    Google Scholar 

  23. L.K.C. Souza, A.A.S. Gonçalves, L.S. Queiroz, J.S. Chaar, G.N. da Rocha Filho, C.E.F. da Costa, Utilization of acai stone biomass for the sustainable production of nanoporous carbon for CO2 capture. Sustain. Mater. Technol. 25, e00168 (2020)

    Google Scholar 

  24. R.O. Araujo, J.S. Chaar, L.S. Queiroz, G.N. Rocha Filho, C.E.F. da Costa, G.C.T. Silva, R. Landers, M.J.F. Costa, A.A.S. Gonçalves, L.K.C. Souza, Low temperature sulfonation of acai stone biomass derived carbons as acid catalysts for esterification reactions. Energy Conv. Manag. 196, 821–830 (2019)

    CAS  Google Scholar 

  25. Foundation of the Brazilian Institute for Geography and Statistics (IBGE), https://sidra.ibge.gov.br/tabela/289#resultado, Accessed April 2020.

  26. S. Brunauer, P.H. Emmett, E. Teller, Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60(2), 309–319 (1938)

    CAS  Google Scholar 

  27. M. Kruk, M. Jaroniec, Gas adsorption characterization of ordered organic−inorganic nanocomposite materials. Chem. Mater. 13(10), 3169–3183 (2001)

    CAS  Google Scholar 

  28. G. Du, Q. Bian, J. Zhang, X. Yang, Facile fabrication of hierarchical porous carbon for a high-performance electrochemical capacitor. RSC Adv. 7, 46329–46335 (2017)

    CAS  Google Scholar 

  29. Z.-Q. Hao, J.-P. Cao, Y. Wu, X.-Y. Zhao, Q.-Q. Zhuang, X.-Y. Wang, X.-Y. Wei, Preparation of porous carbon sphere from waste sugar solution for electric double-layer capacitor. J. Power Sources 361, 249–258 (2017)

    CAS  Google Scholar 

  30. P.L. Taberna, P. Simon, J.F. Fauvarque, Electrochemical characteristics and impedance spectroscopy studies of carbon-carbon supercapacitors. J. Electrochem. Soc. 150(3), 292–300 (2003)

    Google Scholar 

  31. H. Randriamahazaka, K. Asaka, Electromechanical analysis by means of complex capacitance of bucky-gel actuators based on single-walled carbon nanotubes and an ionic liquid. J. Phys. Chem. C 114(41), 17982–17988 (2010)

    CAS  Google Scholar 

  32. A. Singh, A. Chandra, Significant performance enhancement in asymmetric supercapacitors based on metal oxides, carbon nanotubes and neutral aqueous electrolyte. Sci. Rep. 5, 1–12 (2015)

    Google Scholar 

  33. J. Cheng, Q. Xu, X. Wang, Z. Li, F. Wu, J. Shao, H. Xie, Ultrahigh-surface-area nitrogen-doped hierarchically porous carbon materials derived from chitosan and betaine hydrochloride sustainable precursors for high-performance supercapacitors. Sustain. Energy Fuels 3, 1215–1224 (2019)

    CAS  Google Scholar 

  34. I.I. Misnon, N.K.M. Zain, T.S. Lei, B.L. Vijayan, R. Jose, Activated carbon with graphitic content from stinky bean seedpod biowaste as supercapacitive electrode material. Ionics (2020). https://doi.org/10.1007/s11581-020-03565-x

    Article  Google Scholar 

  35. L. Hu, J. Hou, Y. Ma, H. Li, T. Zhaia, Multi-heteroatom self-doped porous carbon derived from swim bladders for large capacitance supercapacitors. J. Mater. Chem. A 4, 15006–15014 (2016)

    CAS  Google Scholar 

  36. M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87, 1051–1069 (2015)

    CAS  Google Scholar 

  37. J. Jagiello, J.P. Oliver, 2D-NLDFT adsorption models for carbon slit-shaped pores with surface energetical heterogeneity and geometrical corrugation. Carbon 55, 70–80 (2013)

    CAS  Google Scholar 

  38. C. Liu, W. Chen, S. Hong, M. Pan, M. Jiang, Q. Wu, C. Mei, fast microwave synthesis of hierarchical porous carbons from waste palm boosted by activated carbons for supercapacitors. Nanomaterials 9(3), 405–408 (2019)

    CAS  Google Scholar 

  39. H. Itoi, H. Nishihara, T. Kyotani, Effect of heteroatoms in ordered microporous carbons on their electrochemical capacitance. Langmuir 32(46), 11997–12004 (2016)

    CAS  Google Scholar 

  40. Y.S. Yun, M.H. Park, S.J. Hong, M.E. Lee, Y.W. Park, H.-J. Jin, Hierarchically porous carbon nanosheets from waste coffee grounds for supercapacitors. ACS Appl. Mater. Interfaces 7(6), 3684–3690 (2015)

    CAS  Google Scholar 

  41. H. Yoon, H.-J. Kim, J.J. Yoo, C.-Y. Yoo, J.H. Park, Y.A. Lee, W.K. Cho, Y.-K. Han, D.H. Kim, Pseudocapacitive slurry electrodes using redox-active quinone for high-performance flow capacitors: an atomic-level understanding of pore texture and capacitance enhancement. J. Mater. Chem. A 3, 23323–23332 (2015)

    CAS  Google Scholar 

  42. J. Lee, Y.A. Lee, C.-Y. Yoo, J.J. Yoo, R. Gwak, W.K. Cho, B. Kim, H. Yoon, Self-templated synthesis of interconnected porous carbon nanosheets with controllable pore size: Mechanism and electrochemical capacitor application. Microporous Mesoporous Mater. 261, 119–125 (2017)

    Google Scholar 

  43. J. Chen, X. Zhou, C. Mei, J. Xu, S. Zhou, C.-P. Wong, Evaluating biomass-derived hierarchically porous carbon as the positive electrode material for hybrid Na-ion capacitors. J. Power Sources 342, 48–55 (2017)

    CAS  Google Scholar 

  44. W. Xing, C.C. Huang, S.P. Zhuo, X. Yuan, G.Q. Wang, D. Hulicova-Jurcakov, Z.F. Yan, G.Q. Lu, Hierarchical porous carbons with high performance for supercapacitor electrodes. Carbon 47(7), 1715–1722 (2009)

    CAS  Google Scholar 

  45. X. Jiang, M. Huang, X. Ju, X. Meng, Fabrication of hierarchical porous carbon spheres for electrochemical capacitor application. Chem. Lett. 45, 48–50 (2016)

    CAS  Google Scholar 

  46. L. Qiang, Z. Hu, Z. Li, Y. Yang, X. Wang, Y. Zhou, X. Zhang, W. Wang, Q. Wang, Hierarchical porous biomass carbon derived from cypress coats for high energy supercapacitors. J. Mater. Sci. 30, 7324–7636 (2019)

    CAS  Google Scholar 

  47. Y. Sun, J. Xue, S. Dong, Y. Zhang, Y. An, B. Ding, T. Zhang, H. Dou, X. Zhang, Biomass-derived porous carbon electrodes for high-performance supercapacitors. J. Mater. Sci. 55, 5166–5176 (2020)

    CAS  Google Scholar 

  48. Y. Shu, A. Dobashi, C. Li, Y. Shen, H. Uyama, Hierarchical porous carbon from greening plant shell for electric double-layer capacitor application. Bull. Chem. Soc. Jpn. 90, 44–51 (2016)

    Google Scholar 

  49. J. Gamby, P.L. Taberna, P. Simon, J.F. Fauvarque, M. Chesneau, Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors. J. Power Sources 101(1), 109–119 (2001)

    CAS  Google Scholar 

  50. J. Yan, T. Wei, W. Qiao, B. Shao, Q. Zhao, L. Zhang, Z. Fan, Rapid microwave-assisted synthesis of graphene nanosheet/Co3O4 composite for supercapacitors. Electrochim. Acta. 55(23), 6973–6978 (2010)

    CAS  Google Scholar 

  51. C. Yang, C.-Y.V. Li, F. Li, K.-Y. Chan, Complex impedance with transmission line model and complex capacitance analysis of ion transport and accumulation in hierarchical core-shell porous carbons. J. Electrochem. Soci. 160(4), 271–278 (2013)

    Google Scholar 

  52. X. Yang, G. Du, L. Zhang, Y. Liu, Preparation of hierarchical porous carbon material derived from starch for high-performance electrochemical capacitor. Mater. Lett. 183, 52–55 (2016)

    CAS  Google Scholar 

  53. A. Oz, S. Hershkovitz, N. Belman, E. Tal-Gutelmacher, Y. Tsur, Analysis of impedance spectroscopy of aqueous supercapacitors by evolutionary programming: finding DFRT from complex capacitance. Solid State Ion. 288, 311–314 (2016)

    CAS  Google Scholar 

  54. V. Ganesh, S. Pitchumani, V. Lakshminarayanan, New symmetric and asymmetric supercapacitors based on high surface area porous nickel and activated carbon. J. Power Sources 158(2), 1523–1532 (2006)

    CAS  Google Scholar 

  55. P. Navalpotro, M. Anderson, R. Marcilla, J. Palma, Insights into the energy storage mechanism of hybrid supercapacitors with redox electrolytes by electrochemical impedance spectroscopy. Electrochim. Acta 263, 110–117 (2018)

    CAS  Google Scholar 

  56. C. Lei, F. Markoulidis, Z. Ashitaka, C. Lekakou, Reduction of porous carbon/Al contact resistance for an electric double-layer capacitor (EDLC). Electrochim. Acta. 92, 183–187 (2013)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the UFAM multidisciplinary program and FAPEAM; granted by the National Council for Scientific and Technological Development (CNPq). MJFC and DVS would like to thank the São Paulo Research Foundation (FAPESP) for Grants Nos 2016/14165-0, 2016/15962-0, and 2013/07793-.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz K. C. de Souza.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Souza, L.K.C., Martins, J.C., Oliveira, D.P. et al. Hierarchical porous carbon derived from acai seed biowaste for supercapacitor electrode materials. J Mater Sci: Mater Electron 31, 12148–12157 (2020). https://doi.org/10.1007/s10854-020-03761-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03761-5

Navigation