Skip to main content
Log in

Emission and opto-dielectric nonlinearity in 2D Cd–ZnO–Na nanostructures: an effect of Na doping

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Cd–ZnO–Na alloy nanostructured thin films were synthesized via sol–gel spin coating method on glass substrates and the effect of Na (1, 2 and 3 wt%) doping variation on linear, nonlinear optical, opto-dielectric, and emission properties of the films was investigated. The variations in physical properties with different Na doping concentrations were analyzed using X-ray diffraction (XRD), atomic force microscope (AFM), scanning electron microscope (SEM), FT-Raman, UV–Vis, and photoluminescence spectroscopy. From XRD patterns, it was observed that the growth of the films occurs along (002) plane with hexagonal wurtzite structure. High percentage of transmittance (viz. 85 to 90%) was recorded for all as grown films. However, the estimated bandgap energy of the films was found to decrease from 3.37 to 3.30 eV with increasing Na doping concentration from 1 to 3 wt%. Emission spectra of the films show an intense and sharp peak near band emission (NBE) at 389 nm whereas a low intense peak was observed at 475 nm. The intensity of NBE peak specifies the significant enhancement in photoluminescence properties of the grown films with increasing Na doping concentrations. Nonlinear optical parameters of the Cd–ZnO–Na films such as χ3 and n2 showed substantial improvements, which were deduced and obtained in the range 1.11 × 10–14–1.91 × 10–12 esu and 5.20 × 10–13–3.19 × 10–11 esu, respectively. The achieved improvement in the grown ZnO films via co-doping with Cd and Na makes them highly suitable candidates for optoelectronics devices applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J.-P. Kim, S.-A. Lee, J.S. Bae, S.-K. Park, U.-C. Choi, C.-R. Cho, Electric properties and surface characterization of transparent Al-doped ZnO thin films prepared by pulsed laser deposition. Thin Solid Films 516, 5223–5226 (2008)

    CAS  Google Scholar 

  2. L. Jiang, K. Huang, J. Li, S. Li, Y. Gao, W. Tang, X. Guo, J. Wang, T. Mei, X. Wang, High carrier mobility low-voltage ZnO thin film transistors fabricated at a low temperature via solution processing. Ceram. Int. 44, 11751–11756 (2018)

    CAS  Google Scholar 

  3. F. Ghomrani, A. Aissat, H. Arbouz, A. Benkouider, Al concentration effect on ZnO based thin films: for photovoltaic applications. Energy Procedia 74, 491–498 (2015)

    CAS  Google Scholar 

  4. A. Myzaferi, A.J. Mughal, D.A. Cohen, R.M. Farrell, S. Nakamura, J.S. Speck, S.P. DenBaars, Zinc oxide clad limited area epitaxy semipolar III-nitride laser diodes. Opt. Express 26, 12490–12498 (2018)

    CAS  Google Scholar 

  5. A. Zawadzka, P. Płóciennik, Y. El Kouari, H. Bougharraf, B. Sahraoui, Linear and nonlinear optical properties of ZnO thin films deposited by pulsed laser deposition. J. Lumin. 169, 483–491 (2016)

    CAS  Google Scholar 

  6. X. Si, S. Xiong-Rui, L. Chun, H. Yi-Bo, F. Guo-Jia, W. Qu-Quan, Linear and nonlinear optical properties of ZnO nanorod arrays. Chin. Phys. B 17, 1291 (2008)

    Google Scholar 

  7. B.G. Shohany, L. Motevalizadeh, M.E. Abrishami, Investigation of ZnO thin-film sensing properties for CO2 detection: effect of Mn doping. J. Theor. Appl. Phys. 12, 219–225 (2018)

    Google Scholar 

  8. V.L. Patil, S.A. Vanalakar, P.S. Patil, J.H. Kim, Fabrication of nanostructured ZnO thin films based NO2 gas sensor via SILAR technique. Sensors Actuators B 239, 1185–1193 (2017)

    CAS  Google Scholar 

  9. C.S. Prajapati, N. Bhat, Highly sensitive CO sensor based on thickness-selective ZnO thin film: device fabrication and packaging. Cryst. Res. Technol. 54, 1800241 (2019)

    Google Scholar 

  10. M. Shkir, M. Arif, V. Ganesh, M.A. Manthrammel, A. Singh, I.S. Yahia, S.R. Maidur, P.S. Patil, S. AlFaify, Investigation on structural, linear, nonlinear and optical limiting properties of sol-gel derived nanocrystalline Mg doped ZnO thin films for optoelectronic applications. J. Mol. Struct. 1173, 375–384 (2018)

    CAS  Google Scholar 

  11. R. Bairy, P.S. Patil, S.R. Maidur, U. Bhat, The role of cobalt doping in tuning the band gap, surface morphology and third-order optical nonlinearities of ZnO nanostructures for NLO device applications. RSC Adv. 9, 22302–22312 (2019)

    CAS  Google Scholar 

  12. A. Agrawal, T. Ahmad Dar, R. Solanki, D.M. Phase, P. Sen, Study of nonlinear optical properties of pure and Mg-doped ZnO films. Physica Status Solidi (b) 252, 1848–1853 (2015)

    CAS  Google Scholar 

  13. R. Hollinger, D. Gupta, M. Zapf, M. Karst, R. Röder, I. Uschmann, U. Reislöhner, D. Kartashov, C. Ronning, C. Spielmann, Polarization dependent multiphoton absorption in ZnO thin films. J. Phys. D 53, 055102 (2019)

    Google Scholar 

  14. K. Sandeep, S. Bhat, S. Dharmaprakash, Nonlinear absorption properties of ZnO and Al doped ZnO thin films under continuous and pulsed modes of operations. Opt. Laser Technol. 102, 147–152 (2018)

    CAS  Google Scholar 

  15. M.R. Islam, M. Rahman, S.F.U. Farhad, J. Podder, Structural, optical and photocatalysis properties of sol–gel deposited Al-doped ZnO thin films. Surf. Interfaces 16, 120–126 (2019)

    CAS  Google Scholar 

  16. N. Talebian, M.R. Nilforoushan, R. Ramazan Ghasem, Enhanced photocatalytic activities of ZnO thin films: a comparative study of hybrid semiconductor nanomaterials. J. Sol-Gel Sci. Technol. 64, 36–46 (2012)

    CAS  Google Scholar 

  17. M. Shkir, B.M. Al-Shehri, M. Pachamuthu, A. Khan, K.V. Chandekar, S. AlFaify, M.S. Hamdy, A remarkable improvement in photocatalytic activity of ZnO nanoparticles through Sr doping synthesized by one pot flash combustion technique for water treatments. Colloids Surf. A 587, 124340 (2020)

    Google Scholar 

  18. K.V. Chandekar, M. Shkir, A. Khan, B.M. Al-Shehri, M.S. Hamdy, S. AlFaify, M.A. El-Toni, A. Aldalbahi, A.A. Ansari, H. Ghaithan, A facile one-pot flash combustion synthesis of La@ZnO nanoparticles and their characterizations for optoelectronic and photocatalysis applications. J. Photochem. Photobiol. A 395, 112465 (2020)

    CAS  Google Scholar 

  19. M. Shkir, K.V. Chandekar, B.M. Alshehri, A. Khan, S. AlFaify, M.S. Hamdy, A remarkable enhancement in photocatalytic activity of facilely synthesized Terbium@Zinc oxide nanoparticles by flash combustion route for optoelectronic applications. Appl. Nanosci. 10, 1811 (2019)

    Google Scholar 

  20. M.-L. Lin, J.-M. Huang, C.-S. Ku, C.-M. Lin, H.-Y. Lee, J.-Y. Juang, High mobility transparent conductive Al-doped ZnO thin films by atomic layer deposition. J. Alloy. Compd. 727, 565–571 (2017)

    CAS  Google Scholar 

  21. M. Rouchdi, E. Salmani, B. Fares, N. Hassanain, A. Mzerd, Synthesis and characteristics of Mg doped ZnO thin films: experimental and ab-initio study. Results Phys. 7, 620–627 (2017)

    Google Scholar 

  22. S. Vijayalakshmi, S. Venkataraj, R. Jayavel, Characterization of cadmium doped zinc oxide (Cd:ZnO) thin films prepared by spray pyrolysis method. J. Phys. D 41, 245403 (2008)

    Google Scholar 

  23. D. Akcan, A. Gungor, L. Arda, Structural and optical properties of Na-doped ZnO films. J. Mol. Struct. 1161, 299–305 (2018)

    CAS  Google Scholar 

  24. M. Hjiri, M.S. Aida, O.M. Lemine, L. El Mir, Study of defects in Li-doped ZnO thin films. Mater. Sci. Semicond. Process. 89, 149–153 (2019)

    CAS  Google Scholar 

  25. K.D.A. Kumar, R. Thomas, S. Valanarasu, V. Ganesh, M. Shkir, S. AlFaify, J. Thirumalai, Analysis of Pr co-doped Al:ZnO thin films using feasible nebulizer spray technique for optoelectronic technology. Appl. Phys. A 125, 712 (2019)

    Google Scholar 

  26. D. Spemann, E.M. Kaidashev, M. Lorenz, J. Vogt, T. Butz, Ion beam analysis of epitaxial (Mg, Cd)xZn1xO and ZnO:(Li, Al, Ga, Sb) thin films grown on c-plane sapphire. Nucl. Instrum. Methods Phys. Res. Sect. B 219–220, 891–896 (2004)

    Google Scholar 

  27. M.R. AlfaroCruz, O. Ceballos-Sanchez, E. Luévano-Hipólito, L.M. Torres-Martínez, ZnO thin films deposited by RF magnetron sputtering: Effects of the annealing and atmosphere conditions on the photocatalytic hydrogen production. Int. J. Hydrogen Energy 43, 10301–10310 (2018)

    CAS  Google Scholar 

  28. K. Kandpal, J. Singh, N. Gupta, C. Shekhar, Effect of thickness on the properties of ZnO thin films prepared by reactive RF sputtering. J. Mater. Sci. 29, 14501–14507 (2018)

    CAS  Google Scholar 

  29. S. Chen, R.M. Wilson, R. Binions, Synthesis of highly surface-textured ZnO thin films by aerosol assisted chemical vapour deposition. J. Mater. Chem. A 3, 5794–5797 (2015)

    CAS  Google Scholar 

  30. G. Kaur, A. Mitra, K.L. Yadav, Pulsed laser deposited Al-doped ZnO thin films for optical applications. Prog. Nat. Sci. 25, 12–21 (2015)

    CAS  Google Scholar 

  31. D. Dastan, Effect of preparation methods on the properties of titania nanoparticles: solvothermal versus sol–gel. Appl. Phys. A 123, 699 (2017)

    Google Scholar 

  32. W.-D. Zhou, D. Dastan, J. Li, X.-T. Yin, Q. Wang, Discriminable sensing response behavior to homogeneous gases based on n-ZnO/p-NiO composites. Nanomaterials 10, 785 (2020)

    CAS  Google Scholar 

  33. X. Zhu, J. Yang, D. Dastan, H. Garmestani, R. Fan, Z. Shi, Fabrication of core-shell structured Ni@BaTiO3 scaffolds for polymer composites with ultrahigh dielectric constant and low loss. Compos. A 125, 105521 (2019)

    Google Scholar 

  34. M. Shkir, M. Anis, S.S. Shaikh, S. AlFaify, An investigation on structural, morphological, optical and third order nonlinear properties of facilely spray pyrolysis fabricated In:CdS thin films. Superlatt. Microstruct. 133, 106202 (2019)

    CAS  Google Scholar 

  35. M. Novotný, M. Vondráček, E. Marešová, P. Fitl, J. Bulíř, P. Pokorný, Š. Havlová, N. Abdellaoui, A. Pereira, P. Hubík, J. More-Chevalier, J. Lančok, Optical and structural properties of ZnO:Eu thin films grown by pulsed laser deposition. Appl. Surf. Sci. 476, 271–275 (2019)

    Google Scholar 

  36. N. Kumari, S.R. Patel, J.V. Gohel, Optical and structural properties of ZnO thin films prepared by spray pyrolysis for enhanced efficiency perovskite solar cell application. Opt. Quant. Electron. 50, 180 (2018)

    Google Scholar 

  37. A. Kepceoğlu, S. Yiğit Gezgin, Y. Gündoğdu, H. Küçükçelebi, H.Ş. Kılıç, Nonlinear optical properties of zinc oxide thin films produced by pulsed laser deposition. Mater. Today 18, 1819–1825 (2019)

    Google Scholar 

  38. K.N. Tonny, R. Rafique, A. Sharmin, M.S. Bashar, Z.H. Mahmood, Electrical, optical and structural properties of transparent conducting Al doped ZnO (AZO) deposited by sol–gel spin coating. AIP Adv. 8, 065307 (2018)

    Google Scholar 

  39. A. Jafari, K. Tahani, D. Dastan, S. Asgary, Z. Shi, X.-T. Yin, W.-D. Zhou, H. Garmestani, Ş. Ţălu, Ion implantation of copper oxide thin films; statistical and experimental results. Surf. Interfaces 18, 100463 (2020)

    Google Scholar 

  40. Y. Song, S. Zhang, C. Zhang, Y. Yang, K. Lv, Raman spectra and microstructure of zinc oxide irradiated with swift heavy ion. Crystals 9, 395 (2019)

    CAS  Google Scholar 

  41. R. Zhang, P.-G. Yin, N. Wang, L. Guo, Photoluminescence and Raman scattering of ZnO nanorods. Solid State Sci. 11, 865–869 (2009)

    Google Scholar 

  42. V.A. Nikitenko, V.G. Plekhanov, S.V. Mukhin, M.V. Tkachev, Raman spectra of oxide zinc powders and single crystals. J. Appl. Spectrosc. 63, 290–292 (1996)

    Google Scholar 

  43. H.-M. Cheng, Hsu, Y.-K. Tseng, L.-J. Lin, W.-F. Hsieh, Raman scattering and efficient UV photoluminescence from well-aligned ZnO nanowires epitaxially grown on GaN buffer layer. J. Phys. Chem. B 109, 8749–8754 (2005)

    CAS  Google Scholar 

  44. Z. Wang, H. Zhang, L. Zhang, J. Yuan, S. Yan, C. Wang, Low-temperature synthesis of ZnO nanoparticles by solid-state pyrolytic reaction. Nanotechnology 14, 11–15 (2002)

    Google Scholar 

  45. Y. Lv, Z. Zhang, J. Yan, W. Zhao, C. Zhai, J. Liu, Growth mechanism and photoluminescence property of hydrothermal oriented ZnO nanostructures evolving from nanorods to nanoplates. J. Alloy. Compd. 718, 161–169 (2017)

    CAS  Google Scholar 

  46. J. Lü, K. Huang, J. Zhu, X. Chen, X. Song, Z. Sun, Preparation and characterization of Na-doped ZnO thin films by sol–gel method. Phys. B 405, 3167–3171 (2010)

    Google Scholar 

  47. A.H. Hammad, M.S. Abdel-wahab, S. Vattamkandathil, A.R. Ansari, Structural and optical properties of ZnO thin films prepared by RF sputtering at different thicknesses. Phys. B 540, 1–8 (2018)

    CAS  Google Scholar 

  48. J.M. Khoshman, A.A. Manda, M.E. Kordesch, Near-infrared optical constants and optical polarization properties of ZnO thin films. Thin Solid Films 578, 139–147 (2015)

    CAS  Google Scholar 

  49. A. El-Denglawey, Characterization of As–Se–Tl films near infrared region. J. Non-Cryst. Solids 357, 1757–1763 (2011)

    CAS  Google Scholar 

  50. I.Y.Y. Bu, Sol-gel production of p-type ZnO thin film by using sodium doping. Superlattices Microstruct. 96, 59–66 (2016)

    CAS  Google Scholar 

  51. J. Tauc, Amorphous and Liquid Semiconductors (Plenum, London, 1974)

    Google Scholar 

  52. M. Shakir, S. Kushwaha, K. Maurya, G. Bhagavannarayana, M. Wahab, Characterization of ZnSe nanoparticles synthesized by microwave heating process. Solid State Commun. 149, 2047–2049 (2009)

    CAS  Google Scholar 

  53. Z.R. Khan, M. Zulfequar, M.S. Khan, Optical and structural properties of thermally evaporated cadmium sulphide thin films on silicon (100) wafers. Mater. Sci. Eng. B 174, 145–149 (2010)

    CAS  Google Scholar 

  54. R. Shakoury, A. Arman, Ş. Ţălu, D. Dastan, C. Luna, S. Rezaee, Stereometric analysis of TiO2 thin films deposited by electron beam ion assisted. Opt. Quant. Electron. 52, 1–12 (2020)

    Google Scholar 

  55. D. Dastan, Nanostructured anatase titania thin films prepared by sol–gel dip coating technique. J. Atomic Mol. Condensate Nano Phys. 2, 109–114 (2015)

    Google Scholar 

  56. M. Shkir, Z.R. Khan, M. Anis, S.S. Shaikh, S. AlFaify, A comprehensive study of opto-electrical and nonlinear properties of Cu@CdS thin films for optoelectronics. Chin. J. Phys. 63, 51–62 (2020)

    CAS  Google Scholar 

  57. M. Arif, M. Shkir, S. AlFaify, A. Sanger, P.M. Vilarinho, A. Singh, Linear and nonlinear optical investigations of N:ZnO/ITO thin films system for opto-electronic functions. Opt. Laser Technol. 112, 539–547 (2019)

    CAS  Google Scholar 

  58. M. Shkir, M. Anis, S. Shafik, M.A. Manthrammel, M.A. Sayeed, M.S. Hamdy, S. AlFaify, An effect of Zn content doping on opto-third order nonlinear characteristics of nanostructured CdS thin films fabricated through spray pyrolysis for optoelectronics. Physica E 118, 113955 (2020)

    CAS  Google Scholar 

  59. Z. Khan, M. Shkir, V. Ganesh, S. AlFaify, I. Yahia, H. Zahran, Linear and nonlinear optics of CBD grown nanocrystalline F doped CdS thin films for optoelectronic applications: an effect of thickness. J. Electron. Mater. 47, 5386–5395 (2018)

    CAS  Google Scholar 

  60. V. Ganesh, I.S. Yahia, S. AlFaify, M. Shkir, Sn-doped ZnO nanocrystalline thin films with enhanced linear and nonlinear optical properties for optoelectronic applications. J. Phys. Chem. Solids 100, 115–125 (2017)

    CAS  Google Scholar 

  61. J. Yang, X. Zhu, H. Wang, X. Wang, C. Hao, R. Fan, D. Dastan, Z. Shi, Achieving excellent dielectric performance in polymer composites with ultralow filler loadings via constructing hollow-structured filler frameworks. Compos. A 131, 105814 (2020)

    CAS  Google Scholar 

  62. L. Sun, Z. Shi, H. Wang, K. Zhang, D. Dastan, K. Sun, R. Fan, Ultrahigh discharge efficiency and improved energy density in rationally designed bilayer polyetherimide–BaTiO3/P (VDF-HFP) composites. J. Mater. Chem. A 8, 5750–5757 (2020)

    CAS  Google Scholar 

  63. D. Dastan, A. Banpurkar, Solution processable sol–gel derived titania gate dielectric for organic field effect transistors. J. Mater. Sci. 28, 3851–3859 (2017)

    CAS  Google Scholar 

  64. D. Dastan, S. W. Gosavi, and N. B. Chaure, Studies on electrical properties of hybrid polymeric gate dielectrics for field effect transistors. in MacromolecularSymposia (Wiley Online Library, 2015), pp. 81–86.

  65. W. Hu, T. Li, X. Liu, D. Dastan, K. Ji, P. Zhao, 1550 nm pumped upconversion chromaticity modulation in Er3+ doped double perovskite LiYMgWO6 for anti-counterfeiting. J. Alloy. Compd. 818, 152933 (2020)

    CAS  Google Scholar 

  66. C.-F. Fu, L.-F. Han, C. Liu, T. Sun, X.-B. Liu, Influence of annealing on microstructure and properties of Cr-doped ZnO thin films deposited on glass surface. J. Mater. Sci. 28, 3812–3818 (2017)

    CAS  Google Scholar 

  67. L.W. Wang, F. Wu, D.X. Tian, W.J. Li, L. Fang, C.Y. Kong, M. Zhou, Effects of Na content on structural and optical properties of Na-doped ZnO thin films prepared by sol–gel method. J. Alloy. Compd. 623, 367–373 (2015)

    CAS  Google Scholar 

  68. R. Adair, L. Chase, S.A. Payne, Nonlinear refractive index of optical crystals. Phys. Rev. B 39, 3337 (1989)

    CAS  Google Scholar 

  69. L. Guo, S. Yang, C. Yang, P. Yu, J. Wang, W. Ge, G.K. Wong, Highly monodisperse polymer-capped ZnO nanoparticles: preparation and optical properties. Appl. Phys. Lett. 76, 2901–2903 (2000)

    CAS  Google Scholar 

  70. H. Ticha, L. Tichy, Semiempirical relation between non-linear susceptibility (refractive index), linear refractive index and optical gap and its application to amorphous chalcogenides. J. Optoelectron. Adv. Mater. 4, 381–386 (2002)

    CAS  Google Scholar 

  71. Z.R. Khan, M. Shkir, A.S. Alshammari, V. Ganesh, S. AlFaify, M. Gandouzi, Structural, linear and third order nonlinear optical properties of sol–gel grown Ag-CdS nanocrystalline thin films. J. Electr. Mater. 48(2), 1122–1132 (2019)

    CAS  Google Scholar 

  72. Z.R. Khan, A.S. Alshammari, M. Shkir, V. Ganesh, S. AlFaify, Enhancement in the photoluminescence, linear and third order nonlinear optical properties of nanostructured Na-CdS thin films for optoelectronic applications. J. Nanopart. Res. 22, 1–16 (2020)

    Google Scholar 

  73. E. Shaaban, M. El-Hagary, H.S. Hassan, Y.A. Ismail, M. Emam-Ismail, A. Ali, Structural, linear and nonlinear optical properties of co-doped ZnO thin films. Appl. Phys. A 122, 20 (2016)

    Google Scholar 

Download references

Acknowledgements

This research has been supported by Scientific Research Deanship at University of Hai’l-Saudi Arabia through project number RG-191242. The authors would like to express their gratitude to Deanship of Scientific Research at King Khalid University for funding this work through Research Groups Program under Grant No. R.G.P2/95/41.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziaul Raza Khan.

Ethics declarations

Conflict of interest

Authors have no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, Z.R., Alshammari, A.S., Bouzidi, M. et al. Emission and opto-dielectric nonlinearity in 2D Cd–ZnO–Na nanostructures: an effect of Na doping. J Mater Sci: Mater Electron 31, 12116–12126 (2020). https://doi.org/10.1007/s10854-020-03758-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03758-0

Navigation