Skip to main content

Light sensitivity and electrical properties of two-dimensional nanoleaf CuO/ITO thin films

Abstract

Leaf-like copper oxide (CuO)/ITO thin film was prepared by chemical bath deposition technique. Two-dimensional nature of the heterojunction thin film is due to the result of interface between ITO and CuO thin film. The structure, surface morphology, chemical composition, and optical properties of the thin film have been studied using XRD, FESEM, EDX, UV–Vis spectrophotometry. The vibration spectrum of the thin film was studied using FTIR spectrometer and the thin film was subjected to the Hall effect measurement. I–V measurements were performed under the illumination of a tungsten halogen lamp and measured parameters such as open circuit voltage, short circuit current density and fill factor. The electrical conductivity, current density-voltage characteristic, and conversion efficiency (3.097%) of CuO/ITO nanoleaves are high compared to the CuO film and may apply numerous applications in solar cell devices.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    B. Singh, S.K. Tiwary, Int. J. Nano Sci. Nanotechnol. 8(1), 11 (2017)

    Google Scholar 

  2. 2.

    V. Dhanasekaran, T. Mahalingam, R. Chandramohan, J.K. Rhee, J.P. Chu, Thin Solid Films 520, 6608 (2012)

    CAS  Article  Google Scholar 

  3. 3.

    K. Ozawa, Y. Oba, K. Edamotob, Surf. Sci. 603, 2163 (2009)

    CAS  Article  Google Scholar 

  4. 4.

    A.R. West, Solid State Chemistry (Willey, Singapore, 2003)

    Google Scholar 

  5. 5.

    S. Chandrasekaran, Sol. Energy Mater. Sol. Cell 109, 220 (2013)

    CAS  Article  Google Scholar 

  6. 6.

    J. Pan, C. Yang, Y. Gao, Sensors Mater. 28(7), 817 (2016)

    CAS  Google Scholar 

  7. 7.

    K. Kim, J.H. Park, H. Kim, J.K. Kim, E.F. Schubert, J. Cho, Appl. Phys. Lett. 108, 041910 (2016)

    Article  Google Scholar 

  8. 8.

    B. Parida, Y. Gil, H. Kim, J. Nanosci. Nanotechnol. 19, 1455 (2019)

    CAS  Article  Google Scholar 

  9. 9.

    F.E. Akkad, M. Marafi, A. Punnoose, G. Prabu, Phys. Stat. Sol. 177, 445 (2000)

    Article  Google Scholar 

  10. 10.

    M. Higuchi, S. Uekusa, R. Nakano, K. Yokogawa, Jpn. J. Appl. Phys. 33(1A), 302 (1994)

    CAS  Article  Google Scholar 

  11. 11.

    P.M. Smith, P.G. Carey, T.W. Sigmon, Appl. Phys. Lett. 70(3), 342 (1997)

    CAS  Article  Google Scholar 

  12. 12.

    K.H. Choi, J.Y. Kim, Y.S. Lee, H.J. Kimaet, Thin Solid Films 341(1), 152 (1999)

    CAS  Article  Google Scholar 

  13. 13.

    K.H. Al-Mayalee, E. Badraddin, F. Watanabe, T. Karabacak, Nanotechnology (2019). https://doi.org/10.1088/1361-6528/ab5889

    Article  Google Scholar 

  14. 14.

    A. Bello, D. Dodoo-Arhin, K. Makgopa, M. Fabiane, N. Manyala, Am. J. Mater. Sci. 4(2), 64 (2014)

    Google Scholar 

  15. 15.

    Y. Cao, S. Liu, X. Jian, G. Zhu, L. Yin, L. Zhang, B. Wu, Y. Wei, T. Chen, Y. Gao, A.H. Tang, C. Wang, W. Hea, W. Zhang, RSC Adv. 5, 34788 (2015)

    CAS  Article  Google Scholar 

  16. 16.

    G.S. Jamila, S. Shamaila, S.A. Khan-Leghari, T. Mahmood, J Phys Chem Solids (2019). https://doi.org/10.1016/j.jpcs.2019.109233

    Article  Google Scholar 

  17. 17.

    T.P. Jaya, P.P. Pradyumnan, Mater. Res. Express 3, 126401 (2016)

    Article  Google Scholar 

  18. 18.

    K. Mageshwari, S. Han, J. Park, Semicond. Sci. Technol. 31, 055004 (2016)

    Article  Google Scholar 

  19. 19.

    C. Zhu, M.J. Panzer, Chem. Mater. 26(9), 2960 (2014)

    CAS  Article  Google Scholar 

  20. 20.

    Y. Qi, B. Bi, Y. Yan, L. Tian, Modern Phys. Lett. B 33, 1950461 (2019)

    CAS  Article  Google Scholar 

  21. 21.

    A.T. Ravichandran, K. Dhanabalan, S. Valanarasu, A. Vasuhi, A. Kathalingam, J. Mater. Sci. Mater. Electron. 26, 921 (2015)

    CAS  Article  Google Scholar 

  22. 22.

    S.K. Kumar, S. Suresh, S. Murugesan, S.P. Raj, Sol. Energy 94, 299 (2013)

    Article  Google Scholar 

  23. 23.

    M. Dhaouad, M. Jlassi, I. Sta, I.B. Miled, G. Mousdis, M. Kompitsas, W. Dimassi, Am. J. Phys. Appl. 6(2), 43 (2018)

    Google Scholar 

  24. 24.

    Z.K. Lateef, M.H. Alzubaidy, N.J. Jubier, J. Multidiscipl. Eng. Sci. Stud. 3(8), 2012 (2017)

    Google Scholar 

  25. 25.

    V. Ramya, K. Neyvasagam, R. Chandramohan, S. Valanarasu, A.M.F. Benial, J. Mater. Sci. Mater. Electron. 26, 8489 (2015)

    CAS  Article  Google Scholar 

  26. 26.

    J. Sultana, S. Paul, A. Karmakar, G.K. Dalapati, S. Chattopadhyay, J. Mater. Sci. Mater. Electron. 29, 12878 (2018)

    CAS  Article  Google Scholar 

  27. 27.

    A.S. Ethiraj, D.J. Kang, Nanoscale Res. Lett. 7, 70 (2012)

    Article  Google Scholar 

  28. 28.

    R. Shabu, A.M.E. Raj, C. Sanjeeviraja, C. Ravidhas, Mater. Res. Bull. 68, 1 (2015)

    CAS  Article  Google Scholar 

  29. 29.

    S. Saehana, Muslimin, Int J Eng Technol 13(6), 83 (2013)

    Google Scholar 

  30. 30.

    D.P. Dubal, D.S. Dhawale, R.R. Salunkhe, V.S. Jamdade, C.D. Lokhande, J. Alloys Compd. 492, 26 (2010)

    CAS  Article  Google Scholar 

  31. 31.

    K. Mageshwari, R. Sathyamoorthy, Mater. Sci. Semicond. Process. 16(2), 337 (2013)

    CAS  Article  Google Scholar 

  32. 32.

    I.Y. Erdogan, O. Gullu, J. Alloys Compd. 492, 378 (2010)

    CAS  Article  Google Scholar 

  33. 33.

    M. Vaseem, A. Umar, Y.B. Hahn, D.H. Kim, K.S. Lee, J.S. Jang, J.S. Lee, Catal. Commun. 10, 11 (2008)

    CAS  Article  Google Scholar 

  34. 34.

    D.P. Dubal, G.S. Gund, R. Holze, H.S. Jadhav, C.D. Lokhande, C.-J. Park, Dalton Trans. 42, 6459 (2013)

    CAS  Article  Google Scholar 

  35. 35.

    S. Dolai, R. Dey, S. Das, S. Hussain, R. Bhar, A.K. Pal, J. Alloys Compd. 724, 456 (2017)

    CAS  Article  Google Scholar 

  36. 36.

    V. Saravanakannan, T. Radhakrishnan, Int. J. Chem. Tech. Res. 6, 306 (2014)

    Google Scholar 

  37. 37.

    H. Kidowaki, T. Oku, T. Akiyama, A.S.B. Jeyadevan, J. Cuya, J. Mater. Sci. Res. 1(1), 138 (2012)

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nachimuthu Suganthi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Thangavel, S., Suganthi, N. Light sensitivity and electrical properties of two-dimensional nanoleaf CuO/ITO thin films. J Mater Sci: Mater Electron 31, 11967–11974 (2020). https://doi.org/10.1007/s10854-020-03751-7

Download citation