Skip to main content
Log in

Enhanced photoactivity of cerium tungstate-modified graphitic carbon nitride heterojunction photocatalyst for the photodegradation of moxifloxacin

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Design and optimization of visible-light-driven photocatalysts for degradation of organic pollutants is an important step towards environmental decontamination. In this study, wolframite cerium tungstate (Ce2(WO4)3, (CW)) hybridized with g-C3N4 (CN) nanosheets was synthesized via a simple hydrothermal route followed by an ultrasound-assisted synthesis method. The prepared Ce2(WO4)3@ g-C3N4 (CW@CN) heterojunction was investigated for photocatalytic degradation of the antibiotic moxifloxacin (MXF) under visible light irradiation. Structural, morphological, and optical properties as well as chemical composition of the as-synthesized heterojunction were investigated by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), UV–Vis diffuse reflectance spectroscopy (UV–Vis DRS) and photoluminescence (PL). MXF photocatalytic degradation by the binary nanostructure (Ce2(WO4)3@ g-C3N4) (94.1%) was the highest compared to g-C3N4 (53.6%) and Ce2(WO4)3 (46.4%). Such enhanced activity could be ascribed to efficient suppression of the charge carriers’ recombination, leading to adequate formation of the reactive species responsible for MXF degradation. Furthermore, the Ce2(WO4)3@ g-C3N4 heterojunction showed remarkable stability over five consecutive cycles, with only 11.5% reduction after the 5th cycle. This work established the potential applicability of Ce2(WO4)3@ g-C3N4 nanostructures towards photocatalytic removal of MXF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. U. Hubicka, J. Krzek, B. Zuromska, M. Walczak, M. Zylewski, D. Pawłowski, Determination of photostability and photodegradation products of moxifloxacin in the presence of metal ions in solutions and solid phase. Kinetics and identification of photoproducts. Photochem. Photobiol. Sci. 11, 351–357 (2012)

    CAS  Google Scholar 

  2. P.B. Iannini, The safety profile of moxifloxacin and other fluoroquinolones in special patient populations. Curr. Med. Res. Opin.® 23, 1403–1413 (2007)

    CAS  Google Scholar 

  3. M.F. Carvalho, A.S. Maia, M.E. Tiritan, P.M.L. Castro, Bacterial degradation of moxifloxacin in the presence of acetate as a bulk substrate. J. Environ. Manag. 168, 219–228 (2016)

    CAS  Google Scholar 

  4. J. Zhou, M. Li, L. Luo, H. Gao, F. Zheng, Photodegradation of moxifloxacin hydrochloride solutions under visible light irradiation: identification of products and the effect of pH on their formation. AAPS Pharm. Sci. Tech. (2017). https://doi.org/10.1208/s12249-017-0929-4

    Article  Google Scholar 

  5. Y.S. Yu, T. Huang, L.L. Zhang, X. Wang, Ag/g-C3N4 catalyst with superior catalytic performance for the degradation of dyes: a borohydride-generated superoxide radical approach. Nanoscale 7, 13723–13733 (2015)

    Google Scholar 

  6. A. Khanna, V.K. Shetty, Solar light induced photocatalytic degradation of reactive blue 220 (RB-220) dye with highly efficient Ag@TiO2 core-shell nanoparticles: a comparison with UV photocatalysis. Sol. Energy 99, 67–76 (2014)

    CAS  Google Scholar 

  7. M. Dhanalakshmi, K. Saravanakumar, S.L. Prabavathi, V. Muthuraj, Iridium doped ZnO nanocomposites: synergistic effect induced photocatalytic degradation of methylene blue and crystal violet. Inorg. Chem. Commun. 111, 107601 (2020)

    CAS  Google Scholar 

  8. A. Fakhri, S. Behrouz, Photocatalytic properties of tungsten trioxide (WO3) nanoparticles for degradation of Lidocaine under visible and sunlight irradiation. Sol. Energy 112, 163–168 (2015)

    CAS  Google Scholar 

  9. X. Bai, L. Wang, R. Zong, Y. Zhu, Photocatalytic activity enhanced via g-C3N4 nanoplates to nanorods. J. Phys. Chem. C 117(19), 9952–9961 (2013)

    CAS  Google Scholar 

  10. Y. Wen, D. Qu, L. An, X. Gao, W. Jiang, D. Wu, D. Yang, Z. Sun, Defective g-C3N4 prepared by the NaBH4 reduction for high-performance H2 production. ACS Sustain. Chem. Eng. 7(2), 2343–2349 (2019)

    CAS  Google Scholar 

  11. J. Feng, T. Chen, S. Liu, Q. Zhou, Y. Ren, Y. Lv, Z. Fan, Improvement of g-C3N4 photocatalytic properties using the Hummers method. J. Colloid Interface Sci. 479, 1–6 (2016)

    CAS  Google Scholar 

  12. D.-G. Wang, P. Tan, H. Wang, M. Song, J. Pan, G.-C. Kuang, BODIPY modified g-C3N4 as a highly efficient photocatalyst for degradation of Rhodamine B under visible light irradiation. J. Solid State Chem. 267, 22–27 (2018)

    CAS  Google Scholar 

  13. S. Lakshmi Prabavathi, K. Govindan, K. Saravanakumar, A. Jang, V. Muthuraj, Construction of heterostructure CoWO4/g-C3N4 nanocomposite as an efficient visible-light photocatalyst for norfloxacin degradation. J. Ind. Eng. Chem. 80, 558–567 (2019)

    Google Scholar 

  14. X. Zhou, C. Shao, S. Yang, X. Li, X. Guo, X. Wang, X. Li, Y. Liu, Heterojunction of g-C3N4/BiOI immobilized on flexible electrospun polyacrylonitrile nanofibers: facile preparation and enhanced visible photocatalytic activity for floating photocatalysis. ACS Sustain. Chem. Eng. 6, 2316–2323 (2018)

    CAS  Google Scholar 

  15. Y. Zheng, Z. Zhang, C. Li, A comparison of graphitic carbon nitrides synthesized from different precursors through pyrolysis. J. Photochem. Photobiol. A 332, 32–44 (2017)

    CAS  Google Scholar 

  16. W. Wan, S. Yu, F. Dong, Q. Zhang, Y. Zhou, Efficient C3N4/graphene oxide macroscopic aerogel visible-light photocatalyst. J. Mater. Chem. 4, 7823–7829 (2016)

    CAS  Google Scholar 

  17. R. Zhang, M. Ma, Q. Zhang, F. Dong, Y. Zhou, Multifunctional g-C3N4/graphene oxide wrapped sponge monoliths as highly efficient adsorbent and photocatalyst. Appl. Catal. B 235, 17–25 (2018)

    CAS  Google Scholar 

  18. R. Li, M. Cai, Z. Xie, Q. Zhang, Y. Zeng, H. Liu, G. Liua, W. Lv, Construction of heterostructured CuFe2O4/g-C3N4 nanocomposite as an efficient visible light photocatalyst with peroxydisulfate for the organic oxidation. Appl. Catal. B 244, 974–982 (2019)

    CAS  Google Scholar 

  19. M. Liang, T. Borjigin, Y. Zhang, B. Liu, H. Liu, H. Guo, Controlled assemble of hollow heterostructured g-C3N4@CeO2 with rich oxygen vacancies for enhanced photocatalytic CO2 reduction. Appl. Catal. B 243, 566–575 (2019)

    CAS  Google Scholar 

  20. T.T. Xiao, Z. Tang, Y. Yang, L.Q. Tang, Y. Zhou, Z.G. Zou, In situ construction of hierarchical WO3/g-C3N4 composite hollow microspheres as a Z-scheme photocatalyst for the degradation of antibiotics. Appl. Catal. B 220, 417–428 (2018)

    CAS  Google Scholar 

  21. T.M. Di, B.C. Zhu, B. Cheng, J.G. Yu, J.S. Xu, A direct Z-scheme g-C3N4/SnS2 photocatalyst with superior visible-light CO2 reduction performance. J. Catal. 352, 532–541 (2017)

    CAS  Google Scholar 

  22. Z.Y. Huang, X.Q. Zeng, K. Li, S.M. Gao, Q.Y. Wang, J. Lu, Z-scheme NiTiO3/g-C3N4 heterojunctions with enhanced photoelectrochemical and photocatalytic performances under visible LED light irradiation. ACS Appl. Mater. Interfaces 9, 41120–41125 (2017)

    CAS  Google Scholar 

  23. P. Raizada, P. Shandilya, P. Singh, P. Thakur, Solar light-facilitated oxytetracycline removal from the aqueous phase utilizing a H2O2/ZnWO4/CaO catalytic system. J. Taibah Univ. Sci. 11, 689–699 (2017)

    Google Scholar 

  24. S. Pramanik, S.C. Bhattacharya, Size tunable synthesis and characterization of cerium tungstate nanoparticles via H2O/AOT/heptane microemulsion. Mater. Chem. Phys. 121, 125–130 (2010)

    CAS  Google Scholar 

  25. K. Adib, M.R. Nasrabadi, Z. Rezvani, S.M. Pourmortazavi, F. Ahmadi, H.R. Naderi, M.R. Ganjali, Facile chemical synthesis of cobalt tungstates nanoparticles as high performance supercapacitor. J. Mater. Sci. Mater. Electron. 27, 4541–4550 (2016)

    CAS  Google Scholar 

  26. Q. Liang, J. Jin, C. Liu, S. Xu, C. Yao, Z. Chen, Z. Li, Hydrothermal fabrication of α-SnWO4/g-C3N4 heterostructure with enhanced visible-light photocatalytic activity. J. Mater. Sci. Mater. Electron. 28, 11279–11283 (2017)

    CAS  Google Scholar 

  27. R. Gupta, B. Boruah, J.M. Modak, G. Madras, Kinetic study of Z-scheme C3N4/CuWO4 photocatalyst towards solar light inactivation of mixed populated bacteria. J. Photochem. Photobiol. A 372, 108–121 (2018)

    Google Scholar 

  28. R. Dadigala, R. Bandi, B.R. Gangapuram, V. Guttena, Construction of in situ self-assembled FeWO4/g-C3N4 nanosheet heterostructured Z-scheme photocatalysts for enhanced photocatalytic degradation of rhodamine B and tetracycline. Nanoscale Adv. 1, 322–333 (2019)

    CAS  Google Scholar 

  29. L.-L. Zheng, X.-Y. Xiao, Y. Li, W.-P. Zhang, Enhanced photocatalytic activity of TiO2 nanoparticles using WS2/g-C3N4 hybrid as co-catalyst. Trans. Nonferrous Met. Soc. China 27, 1117–1126 (2017)

    CAS  Google Scholar 

  30. R. Rameshbabu, P. Ravi, M. Sathish, Cauliflower-like CuS/ZnS nanocomposites decorated g-C3N4 nanosheets as noble metal-free photocatalyst for superior photocatalytic water splitting. Chem. Eng. J. 360, 1277–1286 (2019)

    CAS  Google Scholar 

  31. K. Saravanakumar, R. Karthik, S.-M. Chen, J. Vinoth Kumar, K. Prakash, V. Muthuraj, Construction of novel Pd/CeO2/g-C3N4 nanocomposites as efficient visible-light photocatalysts for hexavalent chromium detoxifcation. J. Colloid Interface Sci. 504, 514–526 (2017)

    CAS  Google Scholar 

  32. K. Govindan, S. Murugesan, P. Maruthamuthu, Photocatalytic degradation of pentachlorophenol in aqueous solution by visible light sensitive N-F-codoped TiO2 photocatalyst. Mater. Res. Bull. 48, 1913–1919 (2013)

    CAS  Google Scholar 

  33. K. Govindan, A.K. Suresh, T. Sakthivel, M. Kalpana, M. Raja, V. Gunasekaran, A. Jang, Effect of peroxomonosulfate, peroxodisulfate and hydrogen peroxide on graphene oxide photocatalytic performances in methyl orange dye degradation. Chemosphere 237, 124479 (2019)

    CAS  Google Scholar 

  34. K. Govindan, H.T. Chandran, M. Raja, S.U. Maheswari, M. Rangarajan, Electron scavenger-assisted photocatalytic degradation of amido black 10B dye with Mn3O4 nanotubes: a response surface methodology study with central composite design. J. Photochem. Photobiol. A 341, 146–156 (2017)

    CAS  Google Scholar 

  35. Y. Yuan, G.-F. Huang, W.-Y. Hu, D.-N. Xiong, B.-X. Zhou, S. Chang, W.-Q. Huang, Construction of g-C3N4/CeO2/ZnO ternary photocatalysts with enhanced photocatalytic performance. J. Phys. Chem. Solids 106, 1–9 (2017)

    CAS  Google Scholar 

  36. M. Zhang, C. Lai, B. Li, D. Huang, G. Zeng, P. Xu, L. Qin, S. Liu, X. Liu, H. Yi, M. Li, C. Chu, Z. Chen, Rational design 2D/2D BiOBr/CDs/g-C3N4 Z-scheme heterojunction photocatalyst with carbon dots as solid-state electron mediators for enhanced visible and NIR photocatalytic activity: kinetics, intermediates, and mechanism insight. J. Catal. 369, 469–481 (2019)

    CAS  Google Scholar 

  37. A.M. Kaczmarek, D. Ndagsi, I.V. Driessche, K.V. Hecke, R.V. Deun, Green and blue emitting 3D structured Tb: Ce2(WO4)3 and Tb:Ce10W22O81 micromaterials. Dalton Trans. 44, 10237–10244 (2015)

    CAS  Google Scholar 

  38. Y. Tan, Z. Shu, J. Zhou, T. Li, W. Wang, Z. Zhao, One-step synthesis of nanostructured g-C3N4/TiO2 composite for highly enhanced visible-light photocatalytic H2 evolution. Appl. Catal. B 230, 260–268 (2018)

    CAS  Google Scholar 

  39. B. Chai, C. Liu, J. Yan, Z. Ren, Z.-J. Wang, In-situ synthesis of WO3 nanoplates anchored on g-C3N4 Z-scheme photocatalysts for significantly enhanced photocatalytic activity. Appl. Surf. Sci. 448, 1–8 (2018)

    CAS  Google Scholar 

  40. J. Fu, Q. Xu, J. Low, C. Jiang, J. Yu, Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst. Appl. Catal. B 243, 556–565 (2019)

    CAS  Google Scholar 

  41. M. Jourshabani, Z. Shariatinia, A. Badiei, Facile one-pot synthesis of cerium oxide/sulfur-doped graphitic carbon nitride (g-C3N4) as efficient nanophotocatalysts under visible light irradiation. J. Colloid Interface Sci. 507, 59–73 (2017)

    CAS  Google Scholar 

  42. V.K.V.P. Srirapu, A. Kumar, P. Srivastava, R.N. Singh, A.S.K. Sinha, Nanosized CoWO4 and NiWO4 as efficient oxygen-evolving electrocatalysts. Electrochim. Acta 209, 75–84 (2016)

    CAS  Google Scholar 

  43. M. Humayun, Z. Hu, A. Khan, W. Cheng, Y. Yuan, Z. Zheng, Q. Fu, W. Luo, Highly efficient degradation of 2,4-dichlorophenol over CeO2/g-C3N4 composites under visible-light irradiation: detailed reaction pathway and mechanism. J. Hazard. Mater. 364, 635–644 (2019)

    CAS  Google Scholar 

  44. C. Li, H. Che, C. Liu, G. Che, P.A. Charpentier, W.Z. Xu, X. Wang, L. Liu, Facile fabrication of g-C3N4QDs/BiVO4 Z-scheme heterojunction towards enhancing photodegradation activity under visible light. J. Taiwan Inst. Chem. E. 95, 669–681 (2019)

    CAS  Google Scholar 

  45. C.-J. Chang, H.-T. Weng, C.-C. Chang, CuSeZnS1-xOx/g-C3N4 heterostructured photocatalysts for efficient photocatalytic hydrogen production. Int. J. Hydrogen Energy 42(37), 23568–23577 (2017)

    CAS  Google Scholar 

  46. L. Ge, C. Han, J. Liu, Novel visible light-induced g-C3N4/Bi2WO6 composite photocatalysts for efficient degradation of methyl orange. Appl. Catal. B 108–109, 100–107 (2011)

    Google Scholar 

  47. Y. Zhao, X. Liang, Y. Wang, H. Shi, E. Liu, J. Fan, X. Hu, iDegradation and removal of Ceftriaxone sodium in aquatic environment with Bi2WO6/g-C3N4 photocatalyst. J. Colloid Interface Sci. 523, 7–17 (2018)

    CAS  Google Scholar 

  48. K. Saravanakumar, V. Muthuraj, S. Vadivel, Constructing novel Ag nanoparticles anchored on MnO2 nanowires as an efficient visible light driven photocatalyst. RSC Adv. 6, 61357–61366 (2016)

    CAS  Google Scholar 

  49. S. Karunamoorthy, M. Velluchamy, Design and synthesis of bandgap tailored porous Ag/NiO nanocomposite: an effective visible light active photocatalyst for degradation of organic pollutants. J. Mater. Sci.: Mater Electron. 29, 20367–20382 (2018)

    CAS  Google Scholar 

  50. K. Saravanakumar, V. Muthuraj, Fabrication of sphere like plasmonic Ag/SnO2 photocatalyst for the degradation of phenol. Optik 131, 754–763 (2017)

    CAS  Google Scholar 

  51. K. Saravanakumar, M.M. Ramjana, P. Suresh, V. Muthuraj, Fabrication of highly efficient visible light driven Ag/CeO2 photocatalyst for degradation of organic pollutants. J. Alloys Compd. 664, 149–160 (2016)

    CAS  Google Scholar 

  52. R. Velmurugan, B. Krishnakumar, B. Subash, M. Swaminathan, Preparation and characterization of carbon nanoparticles loaded TiO2 and its catalytic activity driven by natural sun light. Sol. Energy Mater. Sol. Cells 108, 205–212 (2013)

    CAS  Google Scholar 

  53. K. Saravanakumar, V. Muthuraj, M. Jeyaraj, The design of novel visible light driven Ag/CdO as smart nanocomposite for photodegradation of different dye contaminants. Spectrochim. Acta A 188, 291–300 (2018)

    CAS  Google Scholar 

  54. M. Dhanalakshmi, K. Saravanakumar, S.L. Prabavathi, M. Abinaya, V. Muthuraj, Fabrication of novel surface plasmon resonance induced visible light driven iridium decorated SnO2 nanorods for degradation of organic contaminants. J. Alloys Compd. 763, 512–524 (2018)

    CAS  Google Scholar 

  55. X.V. Doorslaer, P.M. Heynderickx, K. Demeestere, K. Debevere, H.V. Langenhove, J. Dewulf, TiO2 mediated heterogeneous photocatalytic degradation of moxifloxacin: operational variables and scavenger study. Appl. Catal. B 111–112, 150–156 (2012)

    Google Scholar 

  56. H. Wang, Z. Lei, L. Li, X. Wang, Holey g-C3N4 nanosheet wrapped Ag3O4 photocatalyst and its visible-light photocatalytic performance. Sol. Energy 191, 70–77 (2019)

    CAS  Google Scholar 

  57. S.L. Prabavathi, K. Saravanakumar, G. Mamba, V. Muthuraj, 1D/2D MnWO4 nanorods anchored on g-C3N4 nanosheets for enhanced photocatalytic degradation ofloxacin under visible light irradiation. Colloids Surf. A 581, 123845 (2019)

    Google Scholar 

  58. D. Xia, W. Wang, R. Yin, Z. Jiang, T. An, G. Li, H. Zhao, P.K. Wong, Enhanced photocatalytic inactivation of Escherichia coli by a novel Z-scheme g-C3N4/m-Bi2O4 hybrid photocatalyst under visible light: the role of reactive oxygen species. Appl. Catal. B 214, 23–33 (2017)

    CAS  Google Scholar 

  59. C. Li, S. Yu, H. Dong, C. Liu, H. Wu, H. Che, G. Chen, Z-scheme mesoporous photocatalyst constructed by modification of Sn3O4 nanoclusters on g-C3N4 nanosheets with improved photocatalytic performance and mechanism insight. Appl. Catal. B 238, 284–293 (2018)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors mention their heartfelt thanks to the college managing board, Principal and Head of the Department, VHNSN College for providing the necessary research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Muthuraj.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prabavathi, S.L., Saravanakumar, K., Nkambule, T.T.I. et al. Enhanced photoactivity of cerium tungstate-modified graphitic carbon nitride heterojunction photocatalyst for the photodegradation of moxifloxacin. J Mater Sci: Mater Electron 31, 11434–11447 (2020). https://doi.org/10.1007/s10854-020-03692-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03692-1

Navigation