Skip to main content

Advertisement

Log in

Magneto-structural and photocatalytic behavior of mixed Ni–Zn nano-spinel ferrites: visible light-enabled active photodegradation of rhodamine B

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The present study compiles with the physicochemical, magnetic, and photocatalytic evaluation of the mixed spinel Ni–Zn nanoferrites prepared by the auto-combustion sol–gel route. All the samples were characterized by XRD for the recognition of phase-pure cubic spinel structure. Spectral studies that were carried out by FT-IR clearly show two absorptions band revealing the characteristics of ferrite skeleton. The morphology of the prepared nanoparticles was visualized by SEM and TEM microscopy technique. BET analysis showed the enhancement in surface parameters. Hydrodynamic diameter and dispersion studies were evaluated by DLS and Zeta potential measurements. The DC resistivity measured by two-probe technique shows the semiconductor behavior for all the samples. M–H hysteresis loop of all the samples exhibited the superparamagnetic behavior. The energy bandgap values obtained by the UV–Vis spectroscopy technique show the increasing trend from 1.82 to 2.07 eV with increase in Ni2+ content. The photocatalytic activity of Rhodamine B was evaluated under sunlight irradiation. With increasing Ni2+ concentration, the degradation efficiency increased to 98%. Further, the present nanocatalyst shows active reusability and can be easily separable due to its magnetic nature. The obtained results show the enhanced photocatalytic of the Ni–Zn nanoferrites under the visible light in contrast with the available literature reports.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. R. Tanwar, U.K. Mandal, Photocatalytic activity of Ni0.5Zn0.5Fe2O4@ polyaniline decorated BiOCl for azo dye degradation under visible light–integrated role and degradation kinetics interpretation. RSC Adv. 9, 8977–8993 (2019)

    CAS  Google Scholar 

  2. R. Shi, Y. Zhang, X. Wang, Q. Ma, A. Zhang, P. Yang, Electrospun ZnFe2O4 nanotubes and nanobelts: morphology evolution, formation mechanism and Fenton-like photocatalytic activities. Mater. Chem. Phys. 207, 114–122 (2018)

    CAS  Google Scholar 

  3. C. Liang, C.-G. Niu, L. Zhang, X.-J. Wen, S.-F. Yang, H. Guo, G.-M. Zeng, Construction of 2D heterojunction system with enhanced photocatalytic performance: plasmonic Bi and reduced graphene oxide co-modified Bi5O7I with high-speed charge transfer channels. J. Hazard. Mater. 361, 245–258 (2019)

    CAS  Google Scholar 

  4. G. Sharma, D.D. Dionysiou, S. Sharma, A. Kumar, H. Ala’a, M. Naushad, F.J. Stadler, Highly efficient Sr/Ce/activated carbon bimetallic nanocomposite for photoinduced degradation of rhodamine B. Catal. Today 335, 491–500 (2019)

    Google Scholar 

  5. M. Ismail, K. Akhtar, M. Khan, T. Kamal, M.A. Khan, A.M. Asiri, J. Seo, S.B. Khan, Pollution, toxicity and carcinogenicity of organic dyes and their catalytic bio-remediation. Curr. Pharm. Des. 25, 3645–3663 (2019)

    CAS  Google Scholar 

  6. M.M. Naik, H.B. Naik, G. Nagaraju, M. Vinuth, K. Vinu, R. Viswanath, Green synthesis of zinc doped cobalt ferrite nanoparticles: structural, optical, photocatalytic and antibacterial studies. Nano-Struct. Nano-Objects 19, 100322 (2019)

    Google Scholar 

  7. T. Yao, H. Wang, Q. Zuo, J. Wu, X. Zhang, F. Cui, T. Cui, One step preparation of reduced graphene oxide/Pd–Fe3O4@ polypyrrole composites and their application in catalysis. Chemistry 10, 1940–1947 (2015)

    CAS  Google Scholar 

  8. A. Ivanets, M. Roshchina, V. Srivastava, V. Prozorovich, T. Dontsova, S. Nahirniak, V. Pankov, A. Hosseini-Bandegharaei, H.N. Tran, M. Sillanpää, Effect of metal ions adsorption on the efficiency of methylene blue degradation onto MgFe2O4 as Fenton-like catalysts. Colloids Surf. A 571, 17–26 (2019)

    CAS  Google Scholar 

  9. P. Samoila, C. Cojocaru, L. Sacarescu, P.P. Dorneanu, A.-A. Domocos, A. Rotaru, Remarkable catalytic properties of rare-earth doped nickel ferrites synthesized by sol-gel auto-combustion with maleic acid as fuel for CWPO of dyes. Appl. Catal. B 202, 21–32 (2017)

    CAS  Google Scholar 

  10. K.K. Kefeni, B.B. Mamba, T.A. Msagati, Application of spinel ferrite nanoparticles in water and wastewater treatment: a review. Sep. Purif. Technol. 188, 399–422 (2017)

    CAS  Google Scholar 

  11. H. Kardile, S.B. Somvanshi, A.R. Chavan, A. Pandit, K. Jadhav, Effect of Cd2+ doping on structural, morphological, optical, magnetic and wettability properties of nickel ferrite thin films. Optik 207, 164462 (2020)

    CAS  Google Scholar 

  12. S.B. Somvanshi, M.V. Khedkar, P.B. Kharat, K. Jadhav, Influential diamagnetic magnesium (Mg2+) ion substitution in nano-spinel zinc ferrite (ZnFe2O4): thermal, structural, spectral, optical and physisorption analysis. Ceram. Int. 46, 8640–8650 (2020)

    CAS  Google Scholar 

  13. M. Babrekar, K. Jadhav, Synthesis and characterization of spray deposited lithium ferrite thin film. Int. Res. J. Sci. Eng. Special 1, 73–76 (2017)

    Google Scholar 

  14. A. Bajorek, C. Berger, M. Dulski, P. Łopadczak, M. Zubko, K. Prusik, M. Wojtyniak, A. Chrobak, F. Grasset, N. Randrianantoandro, Microstructural and magnetic characterization of Ni0.5Zn0.5Fe2O4 ferrite nanoparticles. J. Phys. Chem. Solids 129, 1–21 (2019)

    CAS  Google Scholar 

  15. P.B. Kharat, S.B. Somvanshi, J.S. Kounsalye, S.S. Deshmukh, P.P. Khirade, K. Jadhav, Temperature dependent viscosity of cobalt ferrite/ethylene glycol ferrofluids, in: AIP Conference Proceedings, AIP Publishing LLC, 2018, p. 050044.

  16. S.B. Kale, S.B. Somvanshi, M. Sarnaik, S. More, S. Shukla, K. Jadhav, Enhancement in surface area and magnetization of CoFe2O4 nanoparticles for targeted drug delivery application, in: AIP Conference Proceedings, AIP Publishing LLC, 2018, p. 030193.

  17. S.B. Somvanshi, S.R. Patade, D.D. Andhare, S.A. Jadhav, M.V. Khedkar, P.B. Kharat, P.P. Khirade, K. Jadhav, Hyperthermic evaluation of oleic acid coated nano-spinel magnesium ferrite: enhancement via hydrophobic-to-hydrophilic surface transformation. J. Alloys Compd. 835, 155422 (2020)

    CAS  Google Scholar 

  18. S.B. Somvanshi, P.B. Kharat, T.S. Saraf, S.B. Somwanshi, S.B. Shejul, K.M. Jadhav, Multifunctional nano-magnetic particles assisted viral RNA-extraction protocol for potential detection of COVID-19. Mater. Res. Innov. 1, 6 (2020)

    Google Scholar 

  19. M. Sugimoto, The past, present, and future of ferrites. J. Am. Ceram. Soc. 82, 269–280 (1999)

    CAS  Google Scholar 

  20. Y.I. Kim, D. Kim, C.S. Lee, Synthesis and characterization of CoFe2O4 magnetic nanoparticles prepared by temperature-controlled coprecipitation method. Phys. B 337, 42–51 (2003)

    CAS  Google Scholar 

  21. S.R. Patade, D.D. Andhare, S.B. Somvanshi, P.B. Kharat, S.D. More, K.M. Jadhav, Preparation and characterisations of magnetic nanofluid of zinc ferrite for hyperthermia. Nanomater. Energy 9, 1–6 (2020)

    Google Scholar 

  22. V. Bhagwat, A.V. Humbe, S. More, K. Jadhav, Sol-gel auto combustion synthesis and characterizations of cobalt ferrite nanoparticles: different fuels approach. Mater. Sci. Eng. B 248, 114388 (2019)

    CAS  Google Scholar 

  23. S.B. Somvanshi, R.V. Kumar, J.S. Kounsalye, T.S. Saraf, K. Jadhav, Investigations of structural, magnetic and induction heating properties of surface functionalized zinc ferrite nanoparticles for hyperthermia applications, in: AIP Conference Proceedings, AIP Publishing LLC, 2019, p. 030522.

  24. A. Bhosale, S.B. Somvanshi, V. Murumkar, K. Jadhav, Influential incorporation of RE metal ion (Dy3+) in yttrium iron garnet (YIG) nanoparticles: magnetic, electrical and dielectric behaviour. Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.03.081

    Article  Google Scholar 

  25. N.D. Raskar, D.V. Dake, V.A. Mane, E. Stathatos, U. Deshpande, B. Dole, One step synthesis of vertically grown Mn-doped ZnO nanorods for photocatalytic application. J. Mater. Sci. Mater. Electron. 30, 10886–10899 (2019)

    CAS  Google Scholar 

  26. F. Zhan, R. Wang, J. Yin, Z. Han, L. Zhang, T. Jiao, J. Zhou, L. Zhang, Q. Peng, Facile solvothermal preparation of Fe3O4–Ag nanocomposite with excellent catalytic performance. RSC Adv. 9, 878–883 (2019)

    CAS  Google Scholar 

  27. A. Gedanken, Y. Nitzan, I. Perelshtein, N. Perkas, G. Applerot, Sonochemical coating of textiles with metal oxide nanoparticles for antimicrobial fabrics. Google Patents, 2019.

  28. D. Ponnamma, J.-J. Cabibihan, M. Rajan, S.S. Pethaiah, K. Deshmukh, J.P. Gogoi, S.K. Pasha, M.B. Ahamed, J. Krishnegowda, B. Chandrashekar, Synthesis, optimization and applications of ZnO/polymer nanocomposites. Mater. Sci. Eng. C 98, 1210–1240 (2019)

    CAS  Google Scholar 

  29. D.N. Bhoyar, S.B. Somvanshi, P.B. Kharat, A. Pandit, K. Jadhav, Structural, infrared, magnetic and ferroelectric properties of Sr0.5Ba0.5Ti1-xFexO3 nanoceramics: modifications via trivalent Fe ion doping. Phys. B 581, 411944 (2020)

    CAS  Google Scholar 

  30. P. Sivakumar, R. Ramesh, A. Ramanand, S. Ponnusamy, C. Muthamizhchelvan, Synthesis and characterization of NiFe2O4 nanoparticles and nanorods. J. Alloys Compd. 563, 6–11 (2013)

    CAS  Google Scholar 

  31. I.J.C. Lynda, M. Durka, A. Dinesh, A. Manikandan, S. Jaganathan, A. Baykal, S.A. Antony, Enhanced magneto-optical and photocatalytic properties of ferromagnetic Mg1-yNiyFe2O4 (0.0 ≤ y ≤ 10) spinel nano-ferrites. J. Supercond. Novel Magn. 31, 3637–3647 (2018)

    CAS  Google Scholar 

  32. P. Hankare, K. Sanadi, K. Garadkar, D. Patil, I. Mulla, Synthesis and characterization of nickel substituted cobalt ferrite nanoparticles by sol–gel auto-combustion method. J. Alloys Compd. 553, 383–388 (2013)

    CAS  Google Scholar 

  33. M.V. Khedkar, S.B. Somvanshi, A.V. Humbe, K. Jadhav, Surface modified sodium silicate based superhydrophobic silica aerogels prepared via ambient pressure drying process. J. Non-Cryst. Solids 511, 140–146 (2019)

    CAS  Google Scholar 

  34. P. Sivakumar, R. Ramesh, A. Ramanand, S. Ponnusamy, C. Muthamizhchelvan, Preparation and properties of nickel ferrite (NiFe2O4) nanoparticles via sol–gel auto-combustion method. Mater. Res. Bull. 46, 2204–2207 (2011)

    CAS  Google Scholar 

  35. L. Satyanarayana, K.M. Reddy, S.V. Manorama, Nanosized spinel NiFe2O4: a novel material for the detection of liquefied petroleum gas in air. Mater. Chem. Phys. 82, 21–26 (2003)

    CAS  Google Scholar 

  36. S.B. Somvanshi, P.B. Kharat, M.V. Khedkar, K. Jadhav, Hydrophobic to hydrophilic surface transformation of nano-scale zinc ferrite via oleic acid coating: magnetic hyperthermia study towards biomedical applications. Ceram. Int. 46, 7642–7653 (2020)

    CAS  Google Scholar 

  37. C. Muntean, M. Bozdog, S. Duma, M. Stefanescu, Study on the formation of Co1–xZnxFe2O4 system using two low-temperature synthesis methods. J. Therm. Anal. Calorim. 123, 117–126 (2016)

    CAS  Google Scholar 

  38. P.B. Kharat, S. More, S.B. Somvanshi, K. Jadhav, Exploration of thermoacoustics behavior of water based nickel ferrite nanofluids by ultrasonic velocity method. J. Mater. Sci. Mater. Electron. 30, 6564–6574 (2019)

    CAS  Google Scholar 

  39. V. Bharati, S.B. Somvanshi, A.V. Humbe, V. Murumkar, V. Sondur, K. Jadhav, Influence of trivalent Al–Cr co-substitution on the structural, morphological and Mössbauer properties of nickel ferrite nanoparticles. J. Alloys Compd. 821, 153501 (2020)

    CAS  Google Scholar 

  40. H. Mohseni, H. Shokrollahi, I. Sharifi, K. Gheisari, Magnetic and structural studies of the Mn-doped Mg–Zn ferrite nanoparticles synthesized by the glycine nitrate process. J. Magn. Magn. Mater. 324, 3741–3747 (2012)

    CAS  Google Scholar 

  41. S. Joshi, M. Kumar, S. Chhoker, G. Srivastava, M. Jewariya, V. Singh, Structural, magnetic, dielectric and optical properties of nickel ferrite nanoparticles synthesized by co-precipitation method. J. Mol. Struct. 1076, 55–62 (2014)

    CAS  Google Scholar 

  42. M.V. Khedkar, S.A. Jadhav, S.B. Somvanshi, P.B. Kharat, K. Jadhav, Physicochemical properties of ambient pressure dried surface modified silica aerogels: effect of pH variation. SN Appl. Sci. 2, 1–10 (2020)

    Google Scholar 

  43. S.B. Somvanshi, S.A. Jadhav, M.V. Khedkar, P.B. Kharat, S. More, K. Jadhav, Structural, thermal, spectral, optical and surface analysis of rare earth metal ion (Gd3+) doped mixed Zn–Mg nano-spinel ferrites. Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.02.091

    Article  Google Scholar 

  44. P.A. Vinosha, B. Xavier, D. Anceila, S.J. Das, Nanocrystalline ferrite (MFe2O4, M= Ni, Cu, Mn and Sr) photocatalysts synthesized by homogeneous co-precipitation technique. Optik 157, 441–448 (2018)

    CAS  Google Scholar 

  45. F.R. Mariosi, J. Venturini, A. da Cas Viegas, C.P. Bergmann, Lanthanum-doped spinel cobalt ferrite (CoFe2O4) nanoparticles for environmental applications. Ceram. Int. 45, 22316–22323 (2019)

    Google Scholar 

  46. G. Zhou, Z. Ren, L. Wang, J. Wu, B. Sun, A. Zhou, G. Zhang, S. Zheng, S. Duan, Q. Song, Resistive switching memory integrated with amorphous carbon-based nanogenerators for self-powered device. Nano Energy 63, 103793 (2019)

    CAS  Google Scholar 

  47. L. Wu, T.-S. Wu, C.-C. Wei, Effects of various substitutions on the DC resistivity of ferrites. J. Phys. D 13, 259 (1980)

    CAS  Google Scholar 

  48. B. Sun, X. Zhang, G. Zhou, C. Zhang, P. Li, Y. Xia, Y. Zhao, Effect of Cu ions assisted conductive filament on resistive switching memory behaviors in ZnFe2O4-based devices. J. Alloys Compd. 694, 464–470 (2017)

    CAS  Google Scholar 

  49. W. Hu, X. Chen, G. Wu, Y. Lin, N. Qin, D. Bao, Bipolar and tri-state unipolar resistive switching behaviors in Ag/ZnFe2O4/Pt memory devices. Appl. Phys. Lett. 101, 063501 (2012)

    Google Scholar 

  50. C. Murugesan, G. Chandrasekaran, Impact of Gd3+ substitution on the structural, magnetic and electrical properties of cobalt ferrite nanoparticles. RSC Adv. 5, 73714–73725 (2015)

    CAS  Google Scholar 

  51. O. Hemeda, M. El-Saadawy, Effect of gamma irradiation on the structural properties and diffusion coefficient in Co–Zn ferrite. J. Magn. Magn. Mater. 256, 63–68 (2003)

    CAS  Google Scholar 

  52. A.V. Humbe, A.C. Nawle, A. Shinde, K. Jadhav, Impact of Jahn Teller ion on magnetic and semiconducting behaviour of Ni-Zn spinel ferrite synthesized by nitrate-citrate route. J. Alloys Compd. 691, 343–354 (2017)

    CAS  Google Scholar 

  53. Z. Ambrus, N. Balázs, T. Alapi, G. Wittmann, P. Sipos, A. Dombi, K. Mogyorósi, Synthesis, structure and photocatalytic properties of Fe (III)-doped TiO2 prepared from TiCl3. Appl. Catal. B 81, 27–37 (2008)

    CAS  Google Scholar 

  54. T. Takagahara, K. Takeda, Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials. Phys. Rev. B 46, 15578 (1992)

    CAS  Google Scholar 

  55. H.J. Krug, L. Pohlmann, L. Kuhnert, Analysis of the modified complete Oregonator accounting for oxygen sensitivity and photosensitivity of Belousov-Zhabotinskii systems. J. Phys. Chem. 94, 4862–4866 (1990)

    CAS  Google Scholar 

  56. K. Zipare, S. Bandgar, G. Shahane, Effect of Dy-substitution on structural and magnetic properties of MnZn ferrite nanoparticles. J. Rare Earths 36, 86–94 (2018)

    CAS  Google Scholar 

  57. G. Padmapriya, A. Manikandan, V. Krishnasamy, S.K. Jaganathan, S.A. Antony, Spinel NixZn1−xFe2O4 (0.0≤ x≤ 1.0) nano-photocatalysts: synthesis, characterization and photocatalytic degradation of methylene blue dye. J. Mol. Struct. 1119, 39–47 (2016)

    CAS  Google Scholar 

  58. G. Padmapriya, A. Manikandan, V. Krishnasamy, S.K. Jaganathan, S.A. Antony, Enhanced catalytic activity and magnetic properties of spinel MnxZn1–xFe2O4 (0.0≤ x≤ 1.0) nano-photocatalysts by microwave irradiation route. J. Supercond. Novel Magn. 29, 2141–2149 (2016)

    CAS  Google Scholar 

  59. G. Mathubala, A. Manikandan, S. Arul-Antony, P. Ramar, Enhanced photocatalytic activity of spinel CuxMn1–xFe2O4 nanocatalysts for the degradation of methylene blue dye and opto-magnetic properties. Nanosci. Nanotechnol. Lett. 8, 375–381 (2016)

    Google Scholar 

  60. B. Chethan, Y. Ravikiran, S. Vijayakumari, H. Rajprakash, S. Thomas, Nickel substituted cadmium ferrite as room temperature operable humidity sensor. Sens. Actuators A 280, 466–474 (2018)

    CAS  Google Scholar 

  61. V. Chaudhary, R. Chaudhary, Magnetic nanoparticles: synthesis, functionalization, and applications. Nanosci. Nanotechnol. 28, 153–183 (2018)

    Google Scholar 

  62. D. Moitra, Development of novel synthetic methodologies for the preparation of multifunctional ferrite reduced graphene oxide nanocomposites and study of their microwave absorption and catalytic properties (2018).

  63. J. Lv, Q. Hu, C. Cao, Y. Zhao, Modulation of valence band maximum edge and photocatalytic activity of BiOX by incorporation of halides. Chemosphere 191, 427–437 (2018)

    CAS  Google Scholar 

  64. B. Palanivel, C. Ayappan, V. Jayaraman, S. Chidambaram, R. Maheswaran, A. Mani, Inverse spinel NiFe2O4 deposited g-C3N4 nanosheet for enhanced visible light photocatalytic activity. Mater. Sci. Semicond. Process. 100, 87–97 (2019)

    CAS  Google Scholar 

  65. P.G. Bruce, B. Scrosati, J.M. Tarascon, Nanomaterialien für wiederaufladbare Lithiumbatterien. Angew. Chem. 120, 2972–2989 (2008)

    Google Scholar 

  66. S.H. Im, U. Jeong, Y. Xia, Polymer hollow particles with controllable holes in their surfaces. Nat. Mater. 4, 671–675 (2005)

    Google Scholar 

  67. X.Y. Chen, C. Ma, S.P. Bao, Z. Li, Synthesis and photoluminescence of ZnAl2O4: Eu3+ hollow nanophosphors using carbon nanospheres as hard templates. J. Colloid Interface Sci. 346, 8–11 (2010)

    CAS  Google Scholar 

  68. C. Wang, Y. Ao, P. Wang, J. Hou, J. Qian, S. Zhang, Preparation, characterization, photocatalytic properties of titania hollow sphere doped with cerium. J. Hazard. Mater. 178, 517–521 (2010)

    CAS  Google Scholar 

  69. V. Valtchev, Silicalite-1 hollow spheres and bodies with a regular system of macrocavities. Chem. Mater. 14, 4371–4377 (2002)

    CAS  Google Scholar 

  70. A. Dinsmore, M.F. Hsu, M. Nikolaides, M. Marquez, A. Bausch, D. Weitz, Colloidosomes: selectively permeable capsules composed of colloidal particles. Science 298, 1006–1009 (2002)

    CAS  Google Scholar 

  71. Y. Chen, F. Li, W. Cao, T. Li, Preparation of recyclable CdS photocatalytic and superhydrophobic films with photostability by using a screen-printing technique. J. Mater. Chem. A 3, 16934–16940 (2015)

    CAS  Google Scholar 

  72. R.M. Borade, S.B. Somvanshi, S.B. Kale, R.P. Pawar, K. Jadhav, Spinel zinc ferrite nanoparticles: an active nanocatalyst for microwave irradiated solvent free synthesis of chalcones. Mater. Res. Express 7, 016116 (2020)

    CAS  Google Scholar 

Download references

Acknowledgements

The author SAJ acknowledges Prof. B.N. Dole, Department of Physics, Dr. B. A. M. University and Head, Department of Chemistry, Dr. B. A. M. University for providing UV–Vis and FT-IR measurements, respectively. Author Sandeep B. Somvanshi acknowledges Department of Science and Technology (DST), Government of India for DST-INSPIRE Fellowship (IF170288).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. M. Jadhav.

Ethics declarations

Conflict of interest

No conflict of interest associated with this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jadhav, S.A., Somvanshi, S.B., Khedkar, M.V. et al. Magneto-structural and photocatalytic behavior of mixed Ni–Zn nano-spinel ferrites: visible light-enabled active photodegradation of rhodamine B. J Mater Sci: Mater Electron 31, 11352–11365 (2020). https://doi.org/10.1007/s10854-020-03684-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03684-1

Navigation