Skip to main content

Advertisement

Log in

Ag, Ni bimetallic supported g-C3N4 2D/Cd2Sb2O6.8 pyrochlore interface photocatalyst for efficient removal of organic pollutants

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

To improve the efficiency of Cd2Sb2O6.8 pyrochlore catalyst, a novel Schottky barrier influenced Ag, Ni Bimetallic supported g-C3N4 /Cd2Sb2O6.8 material was synthesized. To study the Ag, Ni metallic deposition over the g-C3N4 /Cd2Sb2O6.8, it has been subjected to several characterization techniques such as UV–Vis DRS, HR-TEM, EDS and SAED. The obtained results reveal that the Bimetal deposition acts as a co-catalysts over the g-C3N4/Cd2Sb2O6.8 heterostructure, which increases the absorption of light towards the visible region and separation of photogenerated carriers. The photoremoval efficiency of the materials was investigated with Ciprofloxacin and 4-Nitro phenol as model pollutants under direct sun light irradiation. The photocatalytic degradation rate of the model pollutants using Ag, Ni supported g-C3N4/Cd2Sb2O6.8 was higher compared than pristine g-C3N4 and Cd2Sb2O6.8 materials. The fresh and photo-irradiated ciprofloxacin samples were analyzed by the LC–MS spectra, which further confirms the successful degradation of the organic molecules. It is believed that, the bimetallic catalyst loading on g-C3N4/Cd2Sb2O6.8 material leads to the formation of Schottky barrier and SPR effect, which plays a major role in the efficient degradation of organic pollutants. The probable photo-removal mechanism has been proposed based on the results of trapping experiment. The prepared samples shows the desirable cyclic ability, that will helps to design the photocatalyst based on pyrochore materials and their compositions, which provides a new pathway to increase the degradation efficiency for organic pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. G. Zhao, A. Wang, W. He, Y. Xing, X. Xu, 2D new nonmetal photocatalyst of sulfur-doped h-bn nanosheeets with high photocatalytic activity. Adv. Mater. Interfaces 6, 1900062 (2019)

    CAS  Google Scholar 

  2. G. Liu, Y. Zhang, L. Xu, B. Xu, F. Li, A PW12/Bi2WO6 composite photocatalyst for enhanced visible light photocatalytic degradation of organic dye pollutants. New J. Chem. 43, 3469–3475 (2019)

    CAS  Google Scholar 

  3. Z. Lu, F. He, C.Y. Hsieh, X. Wu, M. Song, X. Liu, Y. Liu, S. Yuan, H. Dong, S. Han, Magnetic hierarchical photocatalytic nanoreactors: towards highly selective Cd2+ removal with secondary pollution free tetracycline degradation. ACS Appl. Nano Mater. 2, 1140–1145 (2019)

    Google Scholar 

  4. J. Fu, Q. Xu, J. Low, C. Jiang, J. Yu, Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst. Appl. Catal. B 243, 556–565 (2019)

    CAS  Google Scholar 

  5. R. Guo, X. Qi, X. Zhang, H. Zhang, X. Cheng, Synthesis of Ag2CO3/α-Fe2O3 heterojunction and it high visible light driven photocatalytic activity for elimination of organic pollutants. Sep. Purif. Technol. 211, 504–513 (2019)

    CAS  Google Scholar 

  6. X. Yuan, D. Shen, Q. Zhang, H. Zou, Z. Liu, F. Peng, Z-scheme Bi2WO6/CuBi2O4 heterojunction mediated by interfacial electric field for efficient visible-light photocatalytic degradation of tetracycline. Chem. Eng. J. 64, 2686–2696 (2019)

    Google Scholar 

  7. Y. Wang, Y. Wei, W. Song, C. Chen, J. Zhao, Photocatalytic hydrodehalogenation for the removal of halogenated aromatic contaminants. ChemCatChem 11, 258–268 (2019)

    CAS  Google Scholar 

  8. B. Palanivel, C. Ayappan, V. Jayaraman, S. Chidambaram, R. Maheswaran, A. Mani, Inverse spinel NiFe2O4 deposited g-C3N4 nanosheet for enhanced visible light photocatalytic activity. Mater. Sci. Semicond. Process. 100, 87–97 (2019)

    CAS  Google Scholar 

  9. J. Luo, X. Zhou, X. Ning, L. Zhan, L. Ma, X. Xu, S. Li, S. Sun, Utilization of LaCoO3 as an efficient co-catalyst to boost the visible light photocatalytic performance of g-C3N4. Sep. Purif. Technol. 201, 309–317 (2018)

    CAS  Google Scholar 

  10. V. Jayaraman, B. Palanivel, C. Ayappan, M. Chellamuthu, A. Mani, CdZnS solid solution supported Ce2Sn2O7 pyrochlore photocatalyst that proves to be an efficient candidate towards the removal of organic pollutants. Sep. Purif. Technol. 224, 405–420 (2019)

    CAS  Google Scholar 

  11. A.F. Fuentes, S.M. Montemayor, M. Maczka, M. Lang, R.C. Ewing, U. Amador, A critical review of existing criteria for the prediction of pyrochlore formation and stability. Inorg. Chem. 57, 12093–12105 (2018)

    CAS  Google Scholar 

  12. A.V. Egorysheva, O.M. Gajtko, P.O. Rudnev, O.G. Ellert, V.K. Ivanov, Synthesis of Bi–Fe–Sb–O pyrochlore nanoparticles with visible-light photocatalytic activity. Eur. J. Inorg. Chem. 2016, 2193–2199 (2016)

    CAS  Google Scholar 

  13. H. Xue, Z. Li, L. Wu, Z. Ding, X. Wang, X. Fu, Nanocrystalline ternary wide band gap p-block metal semiconductor Sr2Sb2O7: hydrothermal syntheses and photocatalytic benzene degradation. J. Phys. Chem. C 112, 5850–5855 (2008)

    CAS  Google Scholar 

  14. S. Huang, X. Kou, D. He, C. Du, X. Wang, Y. Su, Oxygen-vacancy-mediated photocatalysis over Bi2Sn2O7: exceptional catalytic activity and selectivity. ChemCatChem 11, 6316–6323 (2019)

    CAS  Google Scholar 

  15. S. Niu, R. Zhang, Z. Zhang, J. Zheng, Y. Jiao, C. Guo, In situ construction of the BiOCl/Bi2Ti2O7 heterojunction with enhanced visible-light photocatalytic activity. Inorganic Chemistry Frontiers 6, 791–798 (2019)

    CAS  Google Scholar 

  16. D. Wang, J. Li, Z. Xu, Y. Zhu, G. Chen, Preparation of novel flower-like BiVO4/Bi2Ti2O7/Fe3O4 for simultaneous removal of tetracycline and Cu2+: adsorption and photocatalytic mechanisms. J. Colloid Interface Sci. 533, 344–357 (2019)

    CAS  Google Scholar 

  17. E. Baeissa, Pt/Cd2Sb2O6.8 nanoparticles for efficient visible light photocatalysis. Ceram. Int. 40, 7195–7201 (2014)

    CAS  Google Scholar 

  18. Y. Li, M. Meng, C. Ji, S. Teng, L. Gao, R. Qu, Z. Yang, C. Sun, Y. Zhang, Soft-template synthesis of hybrid carbon and carbon nitride composites with enhanced photocatalytic activity for the degradation of methylene blue under visible light. Environ. Prog. Sustain. Energy 38, 13186 (2019)

    Google Scholar 

  19. P. Wang, J. Xian, J. Chen, Y. He, J. Wang, W. Li, Y. Shao, D. Li, Preparation, photocatalytic activity, and mechanism of Cd2Sb2O6.8-graphene composite. Appl. Catal. B 144, 644–653 (2014)

    CAS  Google Scholar 

  20. Y. Liu, X. Liu, Y. Shen, Study on conduction mechanism and gas-sensing property of semiconducting material Cd2Sb2O6.8. Sens. Actuators B 55, 9–13 (1999)

    CAS  Google Scholar 

  21. F. Gao, Y. Liu, X. Liu, The catalytic effects of the Mg2+-doping on the ethanol-sensing properties of Cd2Sb2O6.8. Sens. Actuators B 77, 653–656 (2001)

    CAS  Google Scholar 

  22. J. Toby, Vapour sensing properties of a cadmium oxide–antimony oxide system ceramic, Cd2Sb2O6.8. J. Mater. Chem. 6, 285–288 (1996)

    Google Scholar 

  23. K. Li, Z. Huang, S. Zhu, S. Luo, L. Yan, Y. Dai, Y. Guo, Y. Yang, Removal of Cr (VI) from water by a biochar-coupled g-C3N4 nanosheets composite and performance of a recycled photocatalyst in single and combined pollution systems. Appl. Catal. B 243, 386–396 (2019)

    CAS  Google Scholar 

  24. X.-J. Wang, X. Tian, Y.-J. Sun, J.-Y. Zhu, F.-T. Li, H.-Y. Mu, J. Zhao, Enhanced Schottky effect of a 2D–2D CoP/gC3N4 interface for boosting photocatalytic H2 evolution. Nanoscale 10, 12315–12321 (2018)

    CAS  Google Scholar 

  25. J. Luo, J. Chen, R. Guo, Y. Qiu, W. Li, X. Zhou, X. Ning, L. Zhan, Rational construction of direct Z-scheme LaMnO3/g-C3N4 hybrid for improved visible-light photocatalytic tetracycline degradation. Sep. Purif. Technol. 211, 882–894 (2019)

    CAS  Google Scholar 

  26. J. Niu, Y. Xie, H. Luo, Q. Wang, Y. Zhang, Y. Wang, Cobalt oxide loaded graphitic carbon nitride as adsorptive photocatalyst for tetracycline removal from aqueous solution. Chemosphere 218, 169–178 (2019)

    CAS  Google Scholar 

  27. X. Lu, Y. Wang, X. Zhang, G. Xu, D. Wang, J. Lv, Z. Zheng, Y. Wu, NiS and MoS2 nanosheet co-modified graphitic C3N4 ternary heterostructure for high efficient visible light photodegradation of antibiotic. J. Hazard. Mater. 341, 10–19 (2018)

    Google Scholar 

  28. Q. Wang, G. Yun, Y. Bai, N. An, Y. Chen, R. Wang, Z. Lei, W. Shangguan, CuS, NiS as co-catalyst for enhanced photocatalytic hydrogen evolution over TiO2. Int. J. Hydrogen Energy 39, 13421–13428 (2014)

    CAS  Google Scholar 

  29. Y.-P. Yuan, S.-W. Cao, L.-S. Yin, L. Xu, C. Xue, NiS2 Co-catalyst decoration on CdLa2S4 nanocrystals for efficient photocatalytic hydrogen generation under visible light irradiation. Int. J. Hydrogen Energy 38, 7218–7223 (2013)

    CAS  Google Scholar 

  30. J. Xie, C. Yang, M. Duan, J. Tang, Y. Wang, H. Wang, J. Courtois, Amorphous NiP as cocatalyst for photocatalytic water splitting. Ceram. Int. 44, 5459–5465 (2018)

    CAS  Google Scholar 

  31. D. Dai, L. Wang, N. Xiao, S. Li, H. Xu, S. Liu, B. Xu, D. Lv, Y. Gao, W. Song, In-situ synthesis of Ni2P co-catalyst decorated Zn0.5Cd0.5S nanorods for high-quantum-yield photocatalytic hydrogen production under visible light irradiation. Appl. Catal. B 233, 194–201 (2018)

    CAS  Google Scholar 

  32. H. Zhao, P. Jiang, W. Cai, Graphitic C3N4 decorated with CoP Co-catalyst: enhanced and stable photocatalytic H2 evolution activity from water under visible-light irradiation. Chemistry 12, 361–365 (2017)

    CAS  Google Scholar 

  33. S. Cao, C.J. Wang, W.F. Fu, Y. Chen, Metal phosphides as co-catalysts for photocatalytic and photoelectrocatalytic water splitting. Chemsuschem 10, 4306–4323 (2017)

    CAS  Google Scholar 

  34. X. Ruan, H. Hu, H. Che, G. Che, C. Li, C. Liu, H. Dong, Facile fabrication of Ag2O/Bi12GeO20 heterostructure with enhanced visible-light photocatalytic activity for the degradation of various antibiotics. J. Alloys Compd. 773, 1089–1098 (2019)

    CAS  Google Scholar 

  35. S. Oros-Ruiz, A. Hernández-Gordillo, C. García-Mendoza, A.A. Rodríguez-Rodríguez, R. Gómez, Comparative activity of CdS nanofibers superficially modified by Au, Cu, and Ni nanoparticles as co-catalysts for photocatalytic hydrogen production under visible light. J. Chem. Technol. Biotechnol. 91, 2205–2210 (2016)

    CAS  Google Scholar 

  36. B. Wang, S. He, L. Zhang, X. Huang, F. Gao, W. Feng, P. Liu, CdS nanorods decorated with inexpensive NiCd bimetallic nanoparticles as efficient photocatalysts for visible-light-driven photocatalytic hydrogen evolution. Appl. Catal. B 243, 229–235 (2019)

    CAS  Google Scholar 

  37. B. Bhuyan, M. Devi, D. Bora, S.S. Dhar, R. Newar, Design of a photoactive bimetallic Cu-Au@g-C3N4 catalyst for visible light driven hydroxylation of the benzene reaction through C-H activation. Eur. J. Inorg. Chem. 2018, 3849–3858 (2018)

    CAS  Google Scholar 

  38. H. Tian, S.-Z. Kang, X. Li, L. Qin, M. Ji, J. Mu, Fabrication of an efficient noble metal-free TiO2-based photocatalytic system using Cu–Ni bimetallic deposit as an active center of H2 evolution from water. Sol. Energy Mater. Sol. Cells 134, 309–317 (2015)

    CAS  Google Scholar 

  39. C. Li, Z. Lou, Y. Yang, Y. Wang, Y. Lu, Z. Ye, L. Zhu, Hollowsphere nanoheterojunction of g-C3N4@TiO2 with high visible light photocatalytic property. Langmuir 35, 779–786 (2019)

    CAS  Google Scholar 

  40. X. Liang, G. Wang, X. Dong, G. Wang, H. Ma, X. Zhang, Graphitic carbon nitride with carbon vacancies for photocatalytic degradation of bisphenol A. ACS Appl. Nano Mater. 2, 517–524 (2018)

    Google Scholar 

  41. L. Liu, Y. Qi, J. Hu, Y. Liang, W. Cui, Efficient visible-light photocatalytic hydrogen evolution and enhanced photostability of core@ shell Cu2O@g-C3N4 octahedra. Appl. Surf. Sci. 351, 1146–1154 (2015)

    CAS  Google Scholar 

  42. J. Zhang, Y. Wang, J. Jin, J. Zhang, Z. Lin, F. Huang, J. Yu, Efficient visible-light photocatalytic hydrogen evolution and enhanced photostability of core/shell CdS/g-C3N4 nanowires. ACS Appl. Mater. Interfaces 5, 10317–10324 (2013)

    CAS  Google Scholar 

  43. R.C. Pawar, S. Kang, H. Han, H. Choi, C.S. Lee, In situ reduction and exfoliation of gC3N4 nanosheets with copious active sites via a thermal approach for effective water splitting. Catal. Sci. Technol. 9, 1004–1012 (2019)

    CAS  Google Scholar 

  44. S. Han, X. Hu, W. Yang, Q. Qian, X. Fang, Y. Zhu, Constructing the band alignment of graphitic carbon nitride (g-C3N4)/copper(I) oxide (Cu2O) composites by adjusting the contact facet for superior photocatalytic activity. ACS Appl. Energy Mater. 2, 1803–1811 (2018)

    Google Scholar 

  45. Y. Huo, Z. Wang, J. Zhang, C. Liang, K. Dai, Ag SPR-promoted 2D porous g-C3N4/Ag2MoO4 composites for enhanced photocatalytic performance towards methylene blue degradation. Appl. Surf. Sci. 459, 271–280 (2018)

    CAS  Google Scholar 

  46. X. Liang, P. Wang, M. Li, Q. Zhang, Z. Wang, Y. Dai, X. Zhang, Y. Liu, M.-H. Whangbo, B. Huang, Adsorption of gaseous ethylene via induced polarization on plasmonic photocatalyst Ag/AgCl/TiO2 and subsequent photodegradation. Appl. Catal. B 220, 356–361 (2018)

    CAS  Google Scholar 

  47. F. Mei, K. Dai, J. Zhang, W. Li, C. Liang, Construction of Ag SPR-promoted step-scheme porous g-C3N4/Ag3VO4 heterojunction for improving photocatalytic activity. Appl. Surf. Sci. 488, 151–160 (2019)

    CAS  Google Scholar 

  48. C. Wang, D. Sun, X. Yu, X. Zhang, Z. Lu, X. Wang, J. Zhao, L. Li, X. Yang, Cu/Ni nanoparticles supported on TiO2 (B) nanotubes as hydrogen generation photocatalysts via hydrolysis of ammonia borane. Inorg. Chem. Front. 5, 2038–2044 (2018)

    CAS  Google Scholar 

  49. S. Ibrahim, Y. Cheng, D. Zhao, M.A. Nadeem, A new insight for photocatalytic hydrogen production by a Cu/Ni based cyanide bridged polymer as a co-catalyst on titania support in glycerol water mixture. Int. J. Hydrogen Energy 44, 2508–2518 (2019)

    CAS  Google Scholar 

  50. Q. Xi, G. Gao, M. Jin, Y. Zhang, H. Zhou, C. Wu, Y. Zhao, L. Wang, P. Guo, J. Xu, Design of graphitic carbon nitride supported Ag–Cu2O composites with hierarchical structures for enhanced photocatalytic properties. Appl. Surf. Sci. 471, 714–725 (2019)

    CAS  Google Scholar 

  51. Y. Zou, H. Huang, S. Li, J. Wang, Y. Zhang, Synthesis of supported Ag/AgCl composite materials and their photocatalytic activity. J. Photochem. Photobiol. A 376, 43–53 (2019)

    CAS  Google Scholar 

  52. P. Verma, Y. Kuwahara, K. Mori, H. Yamashita, Synthesis of mesoporous silica-supported Ag nanorod-based bimetallic catalysts and investigation of their plasmonic activity under visible light irradiation. Catal. Sci. Technol. 7, 2551–2558 (2017)

    CAS  Google Scholar 

  53. J. Xu, L. Peng, X. Fang, Z. Fu, W. Liu, X. Xu, H. Peng, R. Zheng, X. Wang, Developing reactive catalysts for low temperature oxidative coupling of methane: on the factors deciding the reaction performance of Ln2Ce2O7 with different rare earth A sites. Appl. Catal. A 552, 117–128 (2018)

    CAS  Google Scholar 

  54. J. Zhang, D. Wang, L. Lai, X. Fang, J. Xu, X. Xu, X. Zhang, J. Liu, H. Peng, X. Wang, Probing the reactivity and structure relationship of Ln2Sn2O7 (Ln= La, Pr, Sm and Y) pyrochlore catalysts for CO oxidation. Catal. Today 327, 168–176 (2019)

    CAS  Google Scholar 

  55. L. Liu, Y. Qi, J. Lu, S. Lin, W. An, Y. Liang, W. Cui, A stable Ag3PO4@g-C3N4 hybrid core@ shell composite with enhanced visible light photocatalytic degradation. Appl. Catal. B 183, 133–141 (2016)

    CAS  Google Scholar 

  56. J. Jiang, L. Ou-yang, L. Zhu, A. Zheng, J. Zou, X. Yi, H. Tang, Dependence of electronic structure of g-C3N4 on the layer number of its nanosheets: a study by Raman spectroscopy coupled with first-principles calculations. Carbon 80, 213–221 (2014)

    CAS  Google Scholar 

  57. W.-J. Ong, L.-L. Tan, S.-P. Chai, S.-T. Yong, Heterojunction engineering of graphitic carbon nitride (gC3N4) via Pt loading with improved daylight-induced photocatalytic reduction of carbon dioxide to methane. Dalton Trans. 44, 1249–1257 (2015)

    CAS  Google Scholar 

  58. I. Papailias, T. Giannakopoulou, N. Todorova, D. Demotikali, T. Vaimakis, C. Trapalis, Effect of processing temperature on structure and photocatalytic properties of g-C3N4. Appl. Surf. Sci. 358, 278–286 (2015)

    CAS  Google Scholar 

  59. X. Miao, X. Shen, J. Wu, Z. Ji, J. Wang, L. Kong, M. Liu, C. Song, Fabrication of an all solid Z-scheme photocatalyst g-C3N4/GO/AgBr with enhanced visible light photocatalytic activity. Appl. Catal. A 539, 104–113 (2017)

    CAS  Google Scholar 

  60. H. Li, Y. Jing, X. Ma, T. Liu, L. Yang, B. Liu, S. Yin, Y. Wei, Y. Wang, Construction of a well-dispersed Ag/graphene-like gC3N4 photocatalyst and enhanced visible light photocatalytic activity. RSC Adv. 7, 8688–8693 (2017)

    CAS  Google Scholar 

  61. Z. Xu, H. Li, Z. Wu, J. Sun, Z. Ying, J. Wu, N. Xu, Enhanced charge separation of vertically aligned CdS/gC3N4 heterojunction nanocone arrays and corresponding mechanisms. J. Mater. Chem. C 4, 7501–7507 (2016)

    CAS  Google Scholar 

  62. M. Misra, N. Singh, R.K. Gupta, Enhanced visible-light-driven photocatalytic activity of Au@Ag core–shell bimetallic nanoparticles immobilized on electrospun TiO2 nanofibers for degradation of organic compounds. Catal. Sci. Technol. 7, 570–580 (2017)

    CAS  Google Scholar 

  63. X.-J. Wen, C.-G. Niu, L. Zhang, C. Liang, H. Guo, G.-M. Zeng, Photocatalytic degradation of ciprofloxacin by a novel Z-scheme CeO2–Ag/AgBr photocatalyst: influencing factors, possible degradation pathways, and mechanism insight. J. Catal. 358, 141–154 (2018)

    CAS  Google Scholar 

  64. P.V. Bakre, P.S. Volvoikar, A.A. Vernekar, S. Tilve, Influence of acid chain length on the properties of TiO2 prepared by sol-gel method and LC-MS studies of methylene blue photodegradation. J. Colloid Interface Sci. 474, 58–67 (2016)

    CAS  Google Scholar 

  65. D. Sarkar, K.K. Chattopadhyay, Branch density-controlled synthesis of hierarchical TiO2 nanobelt and tunable three-step electron transfer for enhanced photocatalytic property. ACS Appl. Mater. Interfaces 6, 10044–10059 (2014)

    CAS  Google Scholar 

  66. V. Jayaraman, D. Sarkar, R. Rajendran, B. Palanivel, C. Ayappan, M. Chellamuthu, A. Mani, Synergistic effect of band edge potentials on BiFeO3/V2O5 composite: enhanced photo catalytic activity. J. Environ. Manag. 247, 104–114 (2019)

    CAS  Google Scholar 

  67. V.M. Sharma, D. Saha, G. Madras, T.G. Row, Synthesis, structure, characterization and photocatalytic activity of Bi2Zr2O7 under solar radiation. RSC Adv. 3, 18938–18943 (2013)

    CAS  Google Scholar 

  68. K. Bhunia, M. Chandra, S. Khilari, D. Pradhan, Bimetallic PtAu alloy nanoparticles-integrated g-C3N4 hybrid as an efficient photocatalyst for water-to-hydrogen conversion. ACS Appl. Mater. Interfaces 11, 478–488 (2019)

    CAS  Google Scholar 

  69. T. Lv, D. Li, Y. Hong, B. Luo, D. Xu, M. Chen, W. Shi, Facile synthesis of CdS/Bi4V2O11 photocatalysts with enhanced visible-light photocatalytic activity for degradation of organic pollutants in water. Dalton Trans. 46, 12675–12682 (2017)

    CAS  Google Scholar 

  70. N. Wei, H. Cui, M. Wang, X. Wang, X. Song, L. Ding, J. Tian, Highly efficient photocatalytic activity of Ag3PO4/Ag/ZnS(en)0.5 photocatalysts through Z-scheme photocatalytic mechanism. RSC Adv. 7, 18392–18399 (2017)

    CAS  Google Scholar 

  71. K.L. Reddy, S. Kumar, A. Kumar, V. Krishnan, Wide spectrum photocatalytic activity in lanthanide-doped upconversion nanophosphors coated with porous TiO2 and Ag-Cu bimetallic nanoparticles. J. Hazard. Mater. 367, 694–705 (2019)

    CAS  Google Scholar 

Download references

Acknowledgements

The author Venkatesan Jayaraman acknowledges SRM IST for providing financial support in the scheme of University Research Fellowship (URF). We acknowledge the HRTEM FACILITY at SRMIST set up with support from MNRE (Project No. 31/03/20143-15/PVSE-R&D) Government of India, We acknowledge SRM institute of Science and Technology for providing “Micro-Raman FACILITY” UV–Visible DRS “facilities. We acknowledge NRC SRM University for the characterization supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alagiri Mani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1193 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jayaraman, V., Mani, A. Ag, Ni bimetallic supported g-C3N4 2D/Cd2Sb2O6.8 pyrochlore interface photocatalyst for efficient removal of organic pollutants. J Mater Sci: Mater Electron 31, 11247–11267 (2020). https://doi.org/10.1007/s10854-020-03674-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03674-3

Navigation