Skip to main content
Log in

Effect of annealing on the photoluminescence and thermoluminescence properties of Eu2+ doped BaSO4 microgravels

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The quest for developing phosphors emitting intense ultra violet (UV) rays and thermoluminescence (TL) occurring in the temperature range between 180 and 250 °C is on the progressive surge as the phosphors are highly desirable for phototherapy lamps and X-ray dosimetry. For this work, strong UV and TL emitting Eu2+ doped BaSO4 gravels of sub-micro size were synthesized by acid-assisted co-precipitation method. The as-prepared phosphors were annealed at different temperatures (300–700 °C) for 10 h to enhance the UV and TL emissions. The influence of annealing on the crystallite size, morphology, vibrational bands, PL and TL were studied by X-ray diffraction (XRD), Field emission gun scanning electron microscopy (FEGSM), Fourier transform infrared spectroscopy (FTIR), Photoluminescence (PL) and TL spectroscopies, respectively. From XRD, it is noticed that the crystallite size and crystal quality increase when the annealing temperature is raised from 300 to 500 °C, whereas they are found to be decreasing at 600 °C and the trend continues till 700 °C. FEGSEM images show that all the phosphors have similar gravel morphology with inhomogeneous sub-micro size distribution. Formation of clusters is also noticed for phosphors while annealing in the range 300–500 °C. The vibrational bands related to the phosphor have been identified from the FTIR spectra. From PL and TL studies, the prominent emission intensity is found to be the maximum for 500 °C annealed phosphor revealing optimization. PL spectra also exhibit a strong UV emission at ~ 374 nm. The TL glow curve of the phosphors shows the first deconvoluted peak in the temperature range 198–210 °C and the second peak in the range 240.3–259.1 °C. The activation energy for the first peak is in the range 1.02 to 1.30 eV, whereas the second peak is in the range 0.72 to 2.98 eV. Thus the optimized multi-utility phosphor could be beneficial for phototherapy lamps and X-ray dosimeters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. N. Singh, G. Sivaramaiah, J.L. Rao, S. Watanabe, T.K. Gundu Rao, R.V. Patel, V. Singh, J. Lumin. 188, 423 (2017)

    CAS  Google Scholar 

  2. S. Tamboli, G.B. Nair, S.J. Dhoble, D.K. Burghate, Phys. B 535, 232 (2018)

    CAS  Google Scholar 

  3. M.S. Pathak, N. Singh, V. Singh, S. Watanabe, T.K. Gundu Rao, J.K. Lee, Mater. Res. Bull 97, 512 (2018)

    CAS  Google Scholar 

  4. C. Hazra, T. Samanta, S. Ganguli, V. Mahalingam, Chem. Select. 2, 5970 (2017)

    CAS  Google Scholar 

  5. A. Patle, R.R. Patil, S.V. Moharil, AIP Conf. Proc. 1953, 030201 (2018)

    Google Scholar 

  6. O. Taofiq, A. Fernandes, L. Barros, M.F. Barreiro, I.C.F.R. Ferreira, Trends Food Sci. Technol. 70, 82–94 (2017)

    CAS  Google Scholar 

  7. B.C. Batt, A. Soni, G.S. Polymeris, D.K. Koul, D.K. Patel, S.K. Gupta, D.R. Mishra, M.S. Kulkarni, Radiat. Meas. 64, 35 (2014)

    Google Scholar 

  8. J. Manam, P.K. Kumari, S. Das, Appl. Phys. A. 104, 197 (2011)

    CAS  Google Scholar 

  9. S. Bahl, S.P. Lochab, A. Pandey, V. Kumar, V.E. Aleynikov, A.G. Molokanov, P. Kumar, J. Lumin. 149, 176 (2014)

    CAS  Google Scholar 

  10. V. Singh, M.S. Pathak, N. Singh, V. Dubey, P.K. Singh, Optik 152, 9 (2018)

    CAS  Google Scholar 

  11. K. Sharma, S. Bahl, B. Singh, P. Kumar, S.P. Lochab, A. Pandey, Radiat. Phys. Chem. 145, 64 (2018)

    CAS  Google Scholar 

  12. P.M. Singh, N.P. Singh, N.R. Singh, N.M. Singh, Optik 144, 490 (2017)

    CAS  Google Scholar 

  13. V. Singh, N. Singh, M.S. Pathak, V. Dubey, P.K. Singh, Optik 155, 285 (2018)

    CAS  Google Scholar 

  14. B.G. Zhai, D. Liu, Y. He, L. Yang, Y.M. Huang, J. Lumin. 194, 485 (2018)

    CAS  Google Scholar 

  15. S. Cho, Appl. Surf. Sci. 432, 202 (2018)

    CAS  Google Scholar 

  16. S. Chen, X. Zhao, H. Xie, J. Liu, L. Duan, X. Ba, J. Zhao, Appl. Surf. Sci. 258, 3255–3259 (2012)

    CAS  Google Scholar 

  17. R.H. Krishna, B.M. Nagabhushana, H. Nagabhushana, N.S. Murthy, S.C. Sharma, C. Shivakumar, R.P.S. Chakradhar, J. Phys. Chem. C 117, 1915 (2013)

    CAS  Google Scholar 

  18. P.R. Gonzalez, C. Furetta, B.E. Calvo, M.I. Gaso, E. Cruz-Zaragoza, Nucl. Instrum. Methods Phys. Res B. 260, 685 (2007)

    CAS  Google Scholar 

  19. N. Salah, S.P. Lochab, D. Kanjilal, J. Mehra, P.D. Sahare, R. Rajan, A.A. Rupasov, V.E. Aleynikov, J. Phys. D 41, 085408 (2008)

    Google Scholar 

  20. K.R.E. Saraee, A. Kharieky, Appl. Radiat. Isot. 82, 188 (2013)

    Google Scholar 

  21. R.L. Dixon, K.E. Ekstrand, Phys. Med. Bio. 19, 196 (1914)

    Google Scholar 

  22. R. Sangeetharani, A. Lakshmanan, J. Lumin. 174, 63–69 (2016)

    Google Scholar 

  23. P.P. Kumar, T. Subhashini, G.D. Venkatasubbu, Sens. Actuators A 297, 111544 (2019)

    Google Scholar 

  24. C.N. Santos, K. Yukimitu, A.R. Zanata, A.C. Hernandes, Nucl. Instru. Meth. Phys. Res. B. 246, 374 (2006)

    CAS  Google Scholar 

  25. S. Jayasudha, K. Madhukumar, C.M.K. Nair, R.G. Nair, V.M. Anandakumar, T.S. Elias, Spectrochim. Acta. A 155, 21–27 (2016)

    CAS  Google Scholar 

  26. P. Olko, Radiat. Meas. 45, 506–511 (2010)

    CAS  Google Scholar 

  27. M.K. Hussen, F.B. Dejene, J. Solgel Sci. Technol. 88, 454–464 (2018)

    CAS  Google Scholar 

  28. R.K. Tamrakar, N. Tiwari, R.K. Kuraria, D.P. Bisen, V. Dubey, K. Upadhyay, J. Radiat. Res. Appl. Sci. 8, 1–10 (2015)

    CAS  Google Scholar 

  29. X. Luo, W. Cao, M. Xiag, J. Rare Earths 24, 20–24 (2006)

    Google Scholar 

  30. P. Junlabhut, P. Nuthongkum, W. Pechrapa, Mater. Today 5, 13857–13864 (2018)

    CAS  Google Scholar 

  31. Y. Wang, O. Milosevic, L. Gomez, M.E. Ratanal, J.M. Torralba, B. Yang, P.D. Toursend, J. Phys. Conden. matter. 18, 9257–9272 (2006)

    CAS  Google Scholar 

  32. S. Sivakumar, P. Soundarajan, A. Venkatesan, C.P. Khatiwada, Spectrochim. Acta A 137, 137–147 (2015)

    CAS  Google Scholar 

  33. Y.S. Chang, J. Electron. Mater. 37, 1024–1028 (2008)

    CAS  Google Scholar 

  34. S.J. Qazi, A.R. Rennie, J.K. Cockcroft, M. Vickers, J. Colloid Interface Sci. 338, 105 (2009)

    CAS  Google Scholar 

  35. R. Gosh, G.K. Paul, D. Basak, Mater. Res. Bull. 40, 1905–1914 (2005)

    Google Scholar 

  36. A.J. Deotale, R.V. Nandedkar, Mater. Today 3, 2069–2076 (2016)

    Google Scholar 

  37. R.S. Yadav, S.B. Rai, Opt. Laser Technol. 111, 169 (2019)

    CAS  Google Scholar 

  38. K. Vini, H.P. Kumar, K.M. Nissamudeen, J. Mater. Sci. 31, 5653–5666 (2020)

    CAS  Google Scholar 

  39. S. Som, S.K. Sharma, J. Phys. D 45, 415102 (2012)

    Google Scholar 

  40. H. Nagabhushana, B.M. Nagabhushana, H.B. Prem Kumar, B.M. Lakshminarasappa, F. Singh, R.P.S. Chakradhar, J. Alloys Compd. 482, 308 (2009)

    CAS  Google Scholar 

  41. F. Jones, Cryst. Eng. Commun. 14, 8374 (2012)

    CAS  Google Scholar 

  42. K. Biswas, A.D. Sontakke, R. Sen, K. Annapurna, J. Fluoresc. 22, 745 (2012)

    CAS  Google Scholar 

  43. L. Chen, Y. Liu, K. Huang, Mater. Res. Bull. 41, 158 (2006)

    CAS  Google Scholar 

  44. W. Wang, C. Jiang, M. Shen, L. Feng, F. Zhaeng, X. Wu, J. Shen, Appl. Phys. Lett. 94, 081904 (2009)

    Google Scholar 

  45. V.V. Shinde, R.G. Kunghatkar, S.J. Dhoble, Luminescence 30, 1257–1262 (2015)

    CAS  Google Scholar 

  46. X. Sun, J. Zhang, X. Zhang, Y. Luo, X.J. Wang, J. Phys. D 41, 195414 (2008)

    Google Scholar 

  47. N. Salah, P.D. Sahare, S.P. Lochab, P. Kumar, Radiat. Meas. 41, 40 (2006)

    CAS  Google Scholar 

  48. P.F. Smet, K.V.D. Eechout, A.J.J. Bose, E.V.D. Kolk, P. Dorenbos, J. Lumin. 132, 682 (2012)

    CAS  Google Scholar 

  49. N.M. Gupta, J.M. Luthra, J. Shankar, Radiat. Eff. 21, 151 (1974)

    CAS  Google Scholar 

  50. P.S. Chandra, B.N. Lakshminarasappa, B.M. Nagabhushana, J. Alloys Compd. 509, 10159 (2011)

    Google Scholar 

  51. L. Bøtter-Jensen, N.A. Larsen, V. Mejdahl, N.R. Poolton, M.F. Morris, S.W. McKeever, Radiat. Meas. 24, 535 (1995)

    Google Scholar 

  52. H. Toktamis, A.N. Yazici, Chin. Phys. Lett. 29, 087802 (2012)

    Google Scholar 

  53. D.J. Daniel, O. Annalakshmi, U. Madhusoodanan, P. Ramasamy, J. Rare Earth 32, 496 (2014)

    CAS  Google Scholar 

  54. G. Kitis, J.M. Gomez-Ros, J.W.N. Tuyn, J. Phys. D 31, 2636 (1998)

    CAS  Google Scholar 

  55. S. Katyayan, S. Agarwal, Opt. Quant. Electron. 51, 277 (2019)

    Google Scholar 

  56. L. Marton, Advances in electronics, vol. V (Academic Press Inc. Publishers, Newyork, N.Y., 1953)

    Google Scholar 

  57. D.J. Daniel, O. Annalakshmi, U. Madhusoodanan, P. Ramasamy, J. Rare Earths 32, 496 (2014)

    CAS  Google Scholar 

  58. R.K. Tamrakar, D.P. Bisen, I.P. Sahu, N. Brahme, J. Radiat. Res. Appl. Sci. 7, 417–429 (2014)

    Google Scholar 

  59. S.C. Prashantha, B.N. Lakshminarasappa, B.M. Nagabhushana, J. Alloys Compd. 509, 10185–10189 (2011)

    CAS  Google Scholar 

  60. A. Durgakar, A. Muley, N.R. Pawar, V. Chopra, N.S. Dhoble, O.P. Chimankar, S.J. Double, Luminescence 34, 1–10 (2019)

    Google Scholar 

  61. P. Allisy-Roberts, J. Williams, Farry’s Physics for Medical Images, 2nd edn. (Elsevier, Amsterdam, 2008)

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Dr. Sundarakannan, Professor, Department of Physics, Manonmaniam Sundaranar University, Tirunelveli for recording XRD diffractograms. The authors also thank Prof. Dr. A.R. Lakshmanan, Dean of Research & Development, Saveetha Engineering College, Chennai for PL and TL spectral data.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Suresh or C. S. Biju.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhas, S.S.J., Suresh, S., Rita, A. et al. Effect of annealing on the photoluminescence and thermoluminescence properties of Eu2+ doped BaSO4 microgravels. J Mater Sci: Mater Electron 31, 11113–11122 (2020). https://doi.org/10.1007/s10854-020-03660-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03660-9

Navigation