Skip to main content
Log in

Study of low temperature-dependent structural, dielectric, and ferroelectric properties of BaxSr(1−x)TiO3 (x = 0.5, 0.6, 0.7) ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Dielectric studies of sintered pellets of barium strontium titanate, BaxSr(1−x)TiO3 (BST) with different compositions (x = 0.5, 0.6, 0.7) were carried out as a function of temperature in the range 35–297 K. The phase transformation temperature of cubic (paraelectric), tetragonal (ferroelectric), rhombohedral (ferroelectric), and orthorhombic (ferroelectric) phases of the BST ceramics with different strontium contents has been determined. The dielectric properties of the BaxSr(1−x)TiO3 pellets have revealed that Curie temperature decreased on replacing Ba by Sr. The Curie temperatures of Ba0.5Sr0.5TiO3, Ba0.6Sr0.4TiO3, and Ba0.7Sr0.3TiO3 were found to be 245 K, 260 K, and 285 K, respectively. Further, cubic, tetragonal, orthorhombic, and rhombohedral phases were observed for the BST pellets with x = 0.5, 0.6, 0.7 in the low temperature range of 35–297 K. The dielectric studies revealed higher dielectric constant and low dielectric loss for Ba0.6Sr0.4TiO3 sample than that of other compositions of the BST. Polarization–electric field (P–E) hysteresis loop measurements for Ba0.6Sr0.4TiO3 ceramic pellet was carried out with different applied electric fields in the range 1.39 to 4.86 kV/cm and in the temperature range of 108–323 K to study the variation in remanent polarization (Pr), saturated polarization (Ps), and coercive field (Ec). The saturated polarization and remanent polarization were found to increase steadily up to the temperature of 165 K and to decrease drastically at about 323 K as a consequence of ferroelectric to paraelectric transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure. 1
Figure. 2.
Figure. 3.
Figure. 4.
Figure. 5.
Figure. 6.
Figure. 7.
Figure. 8.
Figure. 9.
Figure. 10.

Similar content being viewed by others

References:s

  1. X.X. Xi, H.C. Li, W. Si, A.A. Sirenko, I.A. Akimov, J.R. Fox, A.M. Clark, J. Hao, Oxide thin films for tunable microwave devices. J. Electroceram. 4, 393–405 (2000)

    CAS  Google Scholar 

  2. C. Basceri, S. Streiffer, A.I. Kingon, R. Waser, The dielectric response as a function of temperature and film thickness of fiber-textured (Ba, Sr)TiO3 thin films grown by chemical vapor deposition. J. Appl. Phys. 82, 2497–2504 (1997)

    CAS  Google Scholar 

  3. O. Nakagawara, T. Shimuta, T. Makino, S. Arai, H. Tabata, T. Kawai, Epitaxial growth and dielectric properties of (111) oriented BaTiO3/SrTiO3 superlattices by pulsed-laser deposition. Appl. Phys. Lett. 77, 3257–3259 (2000)

    CAS  Google Scholar 

  4. S.A. Harrington, J. Zhai, S. Denev, V. Gopalan, H. Wang, Z. Bi, S.A. Redfern, S.H. Baek, C.W. Bark, C.B. Eom, Q. Jia, Thick lead-free ferroelectric films with high Curie temperatures through nanocomposite-induced strain. Nat. Nanotechnol. 6, 491–495 (2011)

    CAS  Google Scholar 

  5. K.J. Choi, M. Biegalski, Y.L. Li, A. Sharan, J. Schubert, R. Uecker, P. Reiche, Y.B. Chen, X.Q. Pan, V. Gopalan, L.Q. Chen, Enhancement of ferroelectricity in strained BaTiO3 thin films. Science 306, 1005–1009 (2004)

    CAS  Google Scholar 

  6. S. Adikary, H. Chan, Compositionally graded BaxSr1−xTiO3 thin films for tunable microwave applications. Mater. Chem. Phys. 79, 157–160 (2003)

    CAS  Google Scholar 

  7. G. Wang, T. Polley, A. Hunt, J. Papapolymerou, A high performance tunable RF MEMS switch using barium strontium titanate (BST) dielectrics for reconfigurable antennas and phased arrays. IEEE Antennas Wirel. Propag. Lett. 4, 217–220 (2005)

    Google Scholar 

  8. E. Nenasheva, A. Kanareykin, N. Kartenko, A. Dedyk, S. Karmanenko, Ceramics materials based on (Ba, Sr)TiO3 solid solutions for tunable microwave devices. J. Electroceram. 13, 235–238 (2004)

    CAS  Google Scholar 

  9. M. Yamamuka, T. Kawahara, T. Makita, A. Yuuki, K. Ono, Thermal desorption spectroscopy of (Ba, Sr)TiO3 thin films prepared by chemical vapor deposition. Jpn. J. Appl. Phys. 35, 729 (1996)

    CAS  Google Scholar 

  10. F.A. Miranda, R.R. Romanofsky, F.W. Van Keuls, C.H. Mueller, R.E. Treece, T.V. Rivkin, Thin film multilayer conductor/ferroelectric tunable microwave components for communication applications. Integr Ferroelectr 17, 231–246 (1997)

    CAS  Google Scholar 

  11. L. Zhou, P.M. Vilarinho, J.L. Baptista, Dependence of the structural and dielectric properties of Ba1−xSrxTiO3 ceramic solid solutions on raw material processing. J Eur Ceram Soc 19, 2015–2020 (1999)

    CAS  Google Scholar 

  12. B. Jaffe, W. Cook, H. Jaffe, Piezoelectric Ceramics (Academic Press, London, 1971)

    Google Scholar 

  13. B. Baumert, L.H. Chang, A. Matsuda, T.L. Tsai, C. Tracy, R. Gregory, P. Fejes, N. Cave, W. Chen, D. Taylor, Characterization of sputtered barium strontium titanate and strontium titanate-thin films. J. Appl. Phys. 82, 2558–2566 (1997)

    CAS  Google Scholar 

  14. M. Frey, D. Payne, Grain-size effect on structure and phase transformations for barium titanate. Phys. Rev B 54, 3158 (1996)

    CAS  Google Scholar 

  15. J.E. Spanier, A.M. Kolpak, J.J. Urban, I. Grinberg, L. Ouyang, W.S. Yun, A.M. Rappe, H. Park, Ferroelectric phase transition in individual single-crystalline BaTiO3 nanowires. Nano Lett. 6, 735–739 (2006)

    CAS  Google Scholar 

  16. K.J. Choi, M. Biegalski, Y. Li, A. Sharan, J. Schubert, R. Uecker, P. Reiche, Y. Chen, X. Pan, V. Gopalan, Enhancement of ferroelectricity in strained BaTiO3 thin films. Science 306, 1005–1009 (2004)

    CAS  Google Scholar 

  17. S. Lee, Z.K. Liu, M.H. Kim, C.A. Randall, Influence of nonstoichiometry on ferroelectric phase transition in BaTiO3. J. Appl. Phys. 101, 054119 (2007)

    Google Scholar 

  18. U. Syamaprasad, R.K. Galgali, B.C. Mohanty, dielectric properties of the Ba1−xSrxTiO3 system. Mater. Lett. 7(56), 197–200 (1998)

    Google Scholar 

  19. J.H. Jeon, Effect of SrTiO3 concentration and sintering temperature on microstructure and dielectric constant of Ba1−xSrxTiO3. J. Eur. Ceram. Soc. 24, 1045–1048 (2004)

    CAS  Google Scholar 

  20. S. Gevorgian, A. Vorobiev, D. Kuylenstierna, A. Deleniv, S. Abadei, A. Eriksson, P. Rundqvist, Silicon substrate integrated ferroelectric microwave components. Integr Ferroelectr 66, 125–138 (2004)

    CAS  Google Scholar 

  21. O. Thakur, C. Prakash, D.K. Agrawal, Dielectric behavior of Ba0.95Sr0.05TiO3 ceramics sintered by microwave. Mater. Sci. Eng. B 96, 221–225 (2002)

    Google Scholar 

  22. Y. Shi, H. Liu, H. Hao, M. Cao, Z. Yao, Z. Song, G. Li, W. Tang, J. Xie, Investigation of dielectric properties for Ba0.4Sr0.6TiO3 ceramics with various grain sizes. Ferroelectrics 487, 109–121 (2015)

    CAS  Google Scholar 

  23. B. Vigneshwaran, P. Kuppusami, A. Panda, A. Singh, H. Sreemoolanadhan, Microstructure and optical properties of Ba06Sr04TiO3 thin films prepared by pulsed laser deposition. Mater. Res. Express 5, 066420 (2018)

    Google Scholar 

  24. M.M.N. Ansari, S. Khan, Structural, electrical and optical properties of sol-gel synthesized cobalt substituted MnFe2O4 nanoparticles. Phys. B 520, 21–27 (2017)

    CAS  Google Scholar 

  25. A. Rajeshwari, I. Kartharinal Punithavthy, S. Johnson Jeyakumar, N. Lenin, B. Vigneshwaran, Dependance of lanthanum ions on structural, magnetic and electrical of manganese based spinel nanoferrites. Ceram. Int. 46(1), 6860–6870 (2020)

    CAS  Google Scholar 

  26. X. Wang, R. Huang, Y. Zhao, Y. Zhao, H. Zhou, Z. Jia, Dielectric and tunable properties of Zr doped BST ceramics prepared by spark plasma sintering. J. Alloy. Compd. 533, 25–28 (2012)

    CAS  Google Scholar 

  27. M. Arshad, H. Du, M.S. Javed, A. Maqsood, I. Ashraf, S. Hussain, W. Ma, H. Ran, Fabrication, structure, and frequency-dependent electrical and dielectric properties of Sr-doped BaTiO3 ceramics. Ceram. Int. (2019). https://doi.org/10.1016/j.ceramint.2019.09.208

    Article  Google Scholar 

  28. A.H. Taylor, R. Miller, R.D. Gray, New Caledonian crows reason about hidden causal agents. Proc. Natl. Acad. Sci. USA 109, 16389–16391 (2012)

    CAS  Google Scholar 

  29. Y.I. Yuzyuk, V. Alyoshin, I. Zakharchenko, E. Sviridov, A. Almeida, M. Chaves, Polarization-dependent Raman spectra of heteroepitaxial (Ba, Sr)TiO3/MgO thin films. Phys. Rev. B 65, 134107 (2002)

    Google Scholar 

  30. U. Balachandraann, N.G. Eror, Raman Spectra of Strontium Titanate. Commun. Ame. Ceram. Soc. 65(4), 54–56 (1982)

    Google Scholar 

  31. W. Weber, K. Hass, J. McBride, Raman study of CeO2: secondorder scattering, lattice dynamics, and particle-size effects. Phys. Rev. B 48, 178 (1993)

    CAS  Google Scholar 

  32. I. Kosacki, T. Suzuki, H.U. Anderson, P. Colomban, Raman scattering and lattice defects in nanocrystalline CeO2 thin films. Solid State Ion 149, 99–105 (2002)

    CAS  Google Scholar 

  33. S. Ajith Kumar, P. Kuppusami, S. Amirthapandian, Y.-P. Fu, Int J Hydrog Energy (2019). https://doi.org/10.1016/j.ijhydene.2019.10.098

    Article  Google Scholar 

  34. S. Ajith Kumar, P. Kuppusami, B. Vigneshwaran, Y.-P. Fu, Codoped Ceria Ce0.8M0.1Gd0.1O2−δ (M = Sm3+, Sr2+, Ca2+) and Codoped Ceria–Na2CO3 nanocomposite electrolytes for solid oxide fuel cells. ACS Appl. Nano Mater. 10, 6300–6311 (2019)

    Google Scholar 

  35. N. Sharma, E. McCartney, Dielectric properties of pure barium titanate as a function of grain size. J. Aust. Ceram. Soc. 10, 16–20 (1974)

    CAS  Google Scholar 

  36. G. Arlt, D. Hennings, G. De With, Dielectric properties of fine-grained barium titanate ceramics. J. Appl. Phys. 58, 1619–1625 (1985)

    CAS  Google Scholar 

  37. J.H. Jeon, Y.D. Hahn, H.D. Kim, Microstructure and dielectric properties of barium–strontium titanate with a functionally graded structure. J. Eur. Ceram. Soc. 21, 1653–1656 (2001)

    CAS  Google Scholar 

  38. W. Li, Z. Xu, R. Chu, P. Fu, J. Hao, Sol–gel synthesis and characterization of Ba(1–x) SrxTiO3 ceramics. J. Alloy. Compd. 499, 255–258 (2010)

    CAS  Google Scholar 

  39. S. Subrahmanyam, E. Goo, Diffuse phase transitions in the (PbxBa1–x)TiO3 system. J. Mater. Sci. 33, 4085–4088 (1998)

    CAS  Google Scholar 

  40. D. Hennings, A. Schnell, Diffuse ferroelectric phase transitions in Ba(Til-y, Zry)O3 ceramics. J. Am. Ceram. Soc. 65(11), 539–544 (1982)

    CAS  Google Scholar 

  41. L.C. Costa, A. Aoujgal, M.P.F. Graca, N. Hadik, M.E. Achour, A. Tachafine, J.C. Carru, A. Oueriagli, A. Outzourit, Microwave dielectric properties of the system Ba1−xSrxTiO3. Phys. B 405, 3741–3744 (2010)

    CAS  Google Scholar 

  42. Y. Bai, Xi Han, K. Ding, L.-J. Qiao, Combined effects of diffuse phase ransition and microstructure on the electrocaloric effect in Ba1−xSrxTiO3 ceramics. Appl. Phys. Lett. 103, 162902 (2013)

    Google Scholar 

  43. M.J. Pan, C.A. Randall, A brief introduction to ceramic capacitors. IEEE Electr. Insul. Mag. 26, 44–50 (2010)

    CAS  Google Scholar 

  44. S. Patel, A. Chauhan, R. Vaisha, P. Thomas, Enhanced energy storage performance of glass added 0.715Bi0.5Na0.5TiO3–0.065BaTiO3–0.22SrTiO3 ferroelectric ceramics. J Asian Ceram Soc 3, 383–389 (2015)

    Google Scholar 

  45. W. Chaisan, R. Yimnirun, S. Ananta, Changes in ferroelectric propertiesof barium titanate ceramic withcompressive stress. Phys. Scr. T. 129, 205–208 (2007)

    Google Scholar 

  46. U. Venkataramudu, C. Sahoo, S. Leelashree, M. Venkatesh, D. Ganesh, S.R.G. Naraharisetty, A.K. Chaudhary, S. Srinath, R. Chandrasekar, Terahertz radiation and second-harmonic generation from a single-component polar organic ferroelectric crystal. J. Mater. Chem. C 6, 9330–9335 (2018)

    CAS  Google Scholar 

  47. J. Zhang, M. Zhao, W. Xie, J. Jin, F. Xie, X. Song, S. Zhang, J. Wu, Y. Tian, A series of novel cadmium (II) coordination polymers with photoluminescence and ferroelectric properties based on zwitterionic ligands. New J. Chem. 41, 9152–9158 (2017)

    CAS  Google Scholar 

  48. W.D. Kingery, Introduction to Ceramics (Wiley, New York, 1976)

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to Vikram Sarabhai Space Centre, Indian Space Research Organization, Thiruvananthapuram for the financial support vide sanction no: ISRO/RES/3/684/15–16 and also to Chancellor, Pro Vice Chancellor, Sathyabama Institute of Science and Technology, Chennai for providing infrastructure and facilities. They are also thankful to UGC-DAE, Indore, India for carrying out dielectric measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Kuppusami.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1654 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vigneshwaran, B., Kuppusami, P., Ajithkumar, S. et al. Study of low temperature-dependent structural, dielectric, and ferroelectric properties of BaxSr(1−x)TiO3 (x = 0.5, 0.6, 0.7) ceramics. J Mater Sci: Mater Electron 31, 10446–10459 (2020). https://doi.org/10.1007/s10854-020-03593-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03593-3

Navigation