Skip to main content

Advertisement

Log in

TiO2 nanocrystalline for enhanced hydrogen and oxygen generation of thin film photocatalyst: from catalytic mechanism and microstructural analysis

  • Review
  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Anatase TiO2 nanocrystalline film prepared by using sol–gel method was assembled on TiO2 nanotubes to produce composite thin film photocatalyst and investigated as interfacial layer for the catalytic performance of Ti/TNT/N–P/NaTaO3:La (the nanostructures is Ti/TiO2 nanotubes/TiO2 nanocrystalline film/NiO film/NaTaO3:La) photocatalyst to generate hydrogen and oxygen under UV irradiation. The as-synthesized samples were characterized by FESEM, XRD, Element Mapping, UV–Vis, PL, IV, and EIS. Characteristic analyses show that the interface between the TNT layer (TiO2 nanotubes) and P layer (NiO film) can be optimized by adjusting the number of N layers (TiO2 nanocrystalline film), thus affecting the efficiency of the photocatalyst. Compared with unformed TiO2 film, the Ti/TNT/N–P/NaTaO3:La photocatalyst with four TiO2 layers enhanced the H2 and O2 generation rate from 43.7 to 87.1 μmol/h which realized almost 2.0 times. The enhanced photocatalytic performance can be attributed to the low defect density and the effective separation of photo-generated electron–hole pairs. Furthermore, the performance stability of thin film photocatalyst was favorably showcased through multiple water splitting reactions, and the rational mechanism of improved photocatalytic property was interpreted systematically. In summary, such results have certain guiding effect on solving the weakness of composite film catalyst of interface defects and carrier recombination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M.R.M. Saavedra, C.H.O. de Fontes, F.G.M. Freires, Renew. Sustain. Energy Rev. 82, 247–259 (2018). https://doi.org/10.1016/j.rser.2017.09.033

    Article  Google Scholar 

  2. Z.P. Xing, J.Q. Zhang, J.Y. Cui et al., Appl. Catal. B-Environ. 225, 452–467 (2018). https://doi.org/10.1016/j.apcatb.2017.12.005

    Article  CAS  Google Scholar 

  3. Y.M. Xia, Z.M. He, J.B. Su et al., J. Electron. Mater. 49, 3259–3268 (2020). https://doi.org/10.1007/s11664-020-08022-z

    Article  CAS  Google Scholar 

  4. Y.M. Xia, J.B. Su, Z.M. He, J. Electron Mater. 48, 3890–3899 (2019). https://doi.org/10.1007/s11664-019-07148-z

    Article  CAS  Google Scholar 

  5. D.B. Xu, S.B. Yang, Y. Jin et al., Langmuir 31, 9694–9699 (2018). https://doi.org/10.1021/acs.langmuir.5b01294

    Article  CAS  Google Scholar 

  6. S. Takasugi, K. Tomita, M. Iwaoka, Int. J. Hydrog. Energy 40, 5638–5643 (2015). https://doi.org/10.1016/j.ijhydene.2015.02.121

    Article  CAS  Google Scholar 

  7. A. Kudo, H. Kato, S. Nakagawa, J. Phys. Chem. B 104, 571–575 (2000). https://doi.org/10.1021/jp9919056

    Article  CAS  Google Scholar 

  8. X.C. Zhang, D.F. Du, Y.R. Jia et al., RSC Adv. 7, 30392–30396 (2017). https://doi.org/10.1039/C7RA02331F

    Article  CAS  Google Scholar 

  9. X.C. Zhang, A.D. Tang, Y.R. Jia et al., J. Alloy Compd. 701, 16–22 (2017). https://doi.org/10.1016/j.jallcom.2017.01.085

    Article  CAS  Google Scholar 

  10. S. Balaz, S.H. Porter, P.M. Woodward et al., Chem. Mater. 25, 3337–3343 (2013). https://doi.org/10.1021/cm401815w

    Article  CAS  Google Scholar 

  11. D.R. Liu, C.D. Wei, B. Xue et al., J. Hazard. Mater. 182, 50–54 (2010). https://doi.org/10.1016/j.jhazmat.2010.05.136

    Article  CAS  Google Scholar 

  12. H. Kato, K. Asakura, A. Kudo, J. Am. Chem. Soc. 125, 3082–3089 (2003). https://doi.org/10.1021/ja027751g

    Article  CAS  Google Scholar 

  13. L.P. Jiang, S.J. Wang, L.Y. Shi et al., Chin. J. Chem. 35, 183–188 (2017). https://doi.org/10.1002/cjoc.201600563

    Article  CAS  Google Scholar 

  14. M.J. Kang, H. Yu, W. Lee et al., J. Phys. Chem Solids. 130, 93–99 (2019). https://doi.org/10.1016/j.jpcs.2019.02.017

    Article  CAS  Google Scholar 

  15. C.J. Chen, C.H. Liao, K.C. Hsu et al., Catal. Commun. 12, 1307–1310 (2011). https://doi.org/10.1016/j.catcom.2011.05.009

    Article  CAS  Google Scholar 

  16. H.P. Li, Z. Su, S.Y. Hu et al., Appl. Catal. B-Environ. 207, 134–142 (2017). https://doi.org/10.1016/j.apcatb.2017.02.013

    Article  CAS  Google Scholar 

  17. Y.M. Xia, Z.M. He, J.B. Su et al., Phys. Status Solidi A. 216, 19900406 (2019). https://doi.org/10.1002/pssa.201900406

    Article  CAS  Google Scholar 

  18. L.B. Hou, S. Li, D.J. Wang et al., J. Colloid Interface Sci. 464, 96–102 (2016). https://doi.org/10.1016/j.jcis.2015.11.019

    Article  CAS  Google Scholar 

  19. K.X. Wang, C.L. Shao, X.H. Li et al., Catal. Commun. 67, 6–10 (2015). https://doi.org/10.1016/j.catcom.2015.03.037

    Article  CAS  Google Scholar 

  20. J. Mallows, M. Planells, V. Thakare et al., ACS Appl. Mater. Interfaces 7, 27597–27601 (2015). https://doi.org/10.1021/acsami.5b09291

    Article  CAS  Google Scholar 

  21. S.W. Liu, C.F. Song, M.K. Lu et al., Catal. Commun. 4, 343–346 (2003). https://doi.org/10.1016/S1566-7367(03)00084-0

    Article  CAS  Google Scholar 

  22. T.J. LaTempa, S. Rani, N.Z. Bao et al., Nanoscale 4, 2245–2250 (2012). https://doi.org/10.1039/C2NR00052K

    Article  CAS  Google Scholar 

  23. P. Lv, H.B. Yang, W.Y. Fu et al., Cryst. Eng. Commun. 16, 6955–6962 (2014). https://doi.org/10.1039/C4CE00122B

    Article  CAS  Google Scholar 

  24. J.R. Manders, S.W. Tsang, M.J. Hartel et al., Adv. Funct. Mater. 23, 2993–3001 (2013). https://doi.org/10.1002/adfm.201202269

    Article  CAS  Google Scholar 

  25. K. Shimura, S. Kato, T. Yoshida et al., J. Phys. Chem. C 114, 3493–3503 (2010). https://doi.org/10.1021/jp902761x

    Article  CAS  Google Scholar 

  26. H. Kato, A. Kudo, J. Phys. Chem. B 105, 4285–4292 (2001). https://doi.org/10.1021/jp004386b

    Article  CAS  Google Scholar 

  27. A. Morales-Acevedo, Sol. Energy Mater. Sol. C 93, 41–44 (2009). https://doi.org/10.1016/j.solmat.2008.02.015

    Article  CAS  Google Scholar 

  28. H. Sudrajat, S. Babel, I. Thushari et al., J. Alloys Compd. 775, 1277–1285 (2019). https://doi.org/10.1016/j.jallcom.2018.10.237

    Article  CAS  Google Scholar 

  29. T.S. Natarajan, J.Y. Lee, H.C. Bajaj et al., Catal. Today 282, 13–23 (2017). https://doi.org/10.1016/j.cattod.2016.03.018

    Article  CAS  Google Scholar 

  30. S. Kumara, S.K. Sharmaa, T.P. Sharmaa et al., J. Phys. Chem. Solids 61, 1809–1813 (2000). https://doi.org/10.1016/S0022-3697(00)00059-7

    Article  Google Scholar 

  31. Y.Y. Chen, X. Xie, Y.S. Si et al., Appl. Surf. Sci. 498, 143860 (2019). https://doi.org/10.1016/j.apsusc.2019.143860

    Article  CAS  Google Scholar 

  32. Y.M. Xia, Z.M. He, J.B. Su et al., J. Mater. Sci.-Mater. 30, 9843–9854 (2019). https://doi.org/10.1007/s10854-019-01321-0

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haibin Yang.

Ethics declarations

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, and there is no professional or other personal interest of any nature or kind in any product, service, and/or company that could be construed as influencing the position presented in, or the review of, “TiO2 nanocrystalline for enhanced hydrogen and oxygen generation of thin film photocatalyst: From catalytic mechanism and microstructural analysis.”

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 8208 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bian, C., Yang, W., Zhu, G. et al. TiO2 nanocrystalline for enhanced hydrogen and oxygen generation of thin film photocatalyst: from catalytic mechanism and microstructural analysis. J Mater Sci: Mater Electron 31, 9961–9968 (2020). https://doi.org/10.1007/s10854-020-03576-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03576-4

Navigation