Skip to main content
Log in

Direct observation of amorphous to crystalline phase transitions in Ge–Sb–Te thin films by grazing incidence X-ray diffraction method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Ge–Sb–Te (GST)-based PCM alloys are currently used in optical data storage. The crystallization of GST materials is the rate-limiting step for these devices, hence a deeper knowledge of the crystallization mechanism is crucial for insightful development of faster devices. In the present work, the diffraction patterns for GST-225 thin films are studied using the in situ Grazing Incidence X-ray Diffraction method upon heating. It is shown that initial amorphous film in the temperature range from 120 to 140 °C is crystallized into two phases-cubic GST-225 (Fm\({\bar{3}}\)m), and trigonal GST-147 (P\({\bar{3}}\)m1). The crystallized film is stressed and highly textured, and should be characterized by the value of the lattice parameters averaged over all crystallographic planes. The structural transition of GST-225 from cubic to trigonal phase begins at T > 180 °C. The appearance of large-scale inhomogeneities in GST-225 film at T ≥  100 °C indicates that the process of rearrangement of atoms Ge, Sb, and Te in the as-deposited amorphous film begins long before the onset of crystallization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, Rapid phase transitions of GeTe - \(\text{ Sb }_2 \text{ Te }_3\) pseudobinary amorphous thin films for an optical disk memory. J. Appl. Phys. 69, 2849 (1991). https://doi.org/10.1063/1.348620

    Article  CAS  Google Scholar 

  2. S.A. Kozyukhin, A.A. Sherchenkov, V.M. Novotortsev, S.P. Timoshenkov, Phase-change-memory materials based on system chalcogenides and their application in phase-change random-access memory. Nanotechnol. Russ. 6, 227–236 (2011). https://doi.org/10.1134/s1995078011020121

    Article  Google Scholar 

  3. M. Wuttig, H. Bhaskaran, T. Taubner, Phase-change materials for non-volatile photonic applications. Nat. Photon. 11, 465–476 (2017). https://doi.org/10.1038/nphoton.2017.126

    Article  CAS  Google Scholar 

  4. G.W. Burr, M.J. Brightssky, A. Sebastian, H.Y. Cheng, J.Y. Wu, S. Kim, N.E. Sosa, N. Papandreou, H.L. Lung, H. Pozidis, E. Eleftheriou, C.H. Lam, Recent progress in phase-change memory technology. IEEE J. Emerg. Sel. Top. Circuits Syst. 6, 146–162 (2016). https://doi.org/10.1109/JETCAS.2016.2547718

    Article  Google Scholar 

  5. B. Legendre, C. Hancheng, S. Bordas, M.T. Clavaguera-Mora, Phase diagram of the ternary system GeSbTe. I. The subternary GeTe-\(\text{ Sb }_2 \text{ Te }_3\)-Te. Thermochim. Acta 78, 141–157 (1984). https://doi.org/10.1016/0040-6031(84)87142-7

    Article  CAS  Google Scholar 

  6. T. Nonaka, G. Ohbayashi, Y. Toriumi, Y. Mori, H. Hashimoto, Crystal structure of GeTe and \(\text{ Ge }_2 \text{ Sb }_2 \text{ Te }_5\) meta-stable phase. Thin Solid Films 370, 258–261 (2000). https://doi.org/10.1016/S0040-6090(99)01090-1

    Article  CAS  Google Scholar 

  7. S. Raoux, W. Welnic, D. Ielmini, Phase change materials and their application to nonvolatile memories. Chem. Rev. 110, 240–267 (2010). https://doi.org/10.1021/cr900040x

    Article  CAS  Google Scholar 

  8. T. Matsunaga, N. Yamada, A study of highly symmetrical crystal structures, commonly seen in high-speed phase-change materials, using synchrotron radiation. Jpn. J. Appl. Phys. 41, 1674–1678 (2002). https://doi.org/10.1143/JJAP.41.1674

    Article  CAS  Google Scholar 

  9. T. Matsunaga, R. Kojima, N. Yamada, K. Kifune, Y. Kubota, Y. Tabata, M. Takata, Single structure widely distributed in a GeTe-\(\text{ Sb }_2 \text{ Te }_3\) pseudobinary system: a rock salt structure is retained by intrinsically containing an enormous number of vacancies within its crystal. Inorg. Chem. 45, 2235–2241 (2006). https://doi.org/10.1021/ic051677w

    Article  CAS  Google Scholar 

  10. K.A. Agaev, A.G. Talybov, Electron-diffraction analysis of structure of \(\text{ GeSb }_2 \text{ Te }_4\). Sov. Phys. Crystallogr. 11, 400–402 (1966)

    Google Scholar 

  11. T. Matsunaga, N. Yamada, Structural investigation of \(\text{ GeSb }_2 \text{ Te }_4\): A high-speed phase-change material. Phys. Rev. B 69, 104111 (2004). https://doi.org/10.1103/PhysRevB.69.104111

    Article  CAS  Google Scholar 

  12. T. Matsunaga, R. Kojima, N. Yamada, K. Kifune, Y. Kubota, M. Takata, Structural features of \(\text{ Ge }_1 \text{ Sb }_4 \text{ Te }_7\), an intermetallic compound in the GeTe-\(\text{ Sb }_2 \text{ Te }_3\) homologous series. Chem. Mater. 20, 5750–5755 (2008). https://doi.org/10.1021/cm703484k

    Article  CAS  Google Scholar 

  13. T. Matsunaga, N. Yamada, Y. Kubota, Structures of stable and metastable \(\text{ Ge }_2 \text{ Sb }_2 \text{ Te }_5\), an intermetallic compound in GeTe-\(\text{ Sb }_2 \text{ Te }_3\) pseudobinary systems. Acta Crystallogr. Sect. B 60, 685–691 (2004). https://doi.org/10.1107/S0108768104022906

    Article  CAS  Google Scholar 

  14. S. Privitera, E. Rimini, C. Bongiorno, R. Zonca, A. Pirovano, R. Bez, Crystallization and phase separation in \(\text{ Ge }_{2+x} \text{ Sb }_2 \text{ Te }_5\) thin films. J. Appl. Phys. 94, 4409–4413 (2003). https://doi.org/10.1063/1.1604458

    Article  CAS  Google Scholar 

  15. N. Yamada, T. Matsunaga, Structure of laser-crystallized \(\text{ Ge }_2 \text{ Sb }_{2+x} \text{ Te }_5\) sputtered thin films for use in optical memory. J. Appl. Phys. 88, 7020–7028 (2000). https://doi.org/10.1063/1.1314323

    Article  CAS  Google Scholar 

  16. N.Kh. Abrikosov, G.T. Danilova-Dobryakova, Ternary system Ge-Sb-Te. Izv Akad Nauk SSSR Neorg. Mater. 6, 475–481 (1970)

    CAS  Google Scholar 

  17. G.M. Rosenblatt, C.E. Birchenall, Vapor pressure of antimony by the torsion-effusion method. J. Chem. Phys. 35, 788–794 (1961). https://doi.org/10.1063/1.1701217

    Article  CAS  Google Scholar 

  18. A.P. Ubelis, Temperature dependence of the saturated vapor pressure of tellurium. J. Eng. Phys. 42, 309–315 (1982). https://doi.org/10.1007/BF00827754

    Article  Google Scholar 

  19. C. Hirayama, The vapor pressure of germanium telluride. J. Phys. Chem. 66, 1563–1565 (1962). https://doi.org/10.1021/j100814a519

    Article  CAS  Google Scholar 

  20. V. Piacente, P. Scardala, D. Ferro, Study of the vaporization behaviour of \(\text{ Sb }_2 \text{ S }_3\) and \(\text{ Sb }_2 \text{ Te }_3\) from their vapour pressure measurements. J. Alloys Compd. 178, 101–115 (1992). https://doi.org/10.1016/0925-8388(92)90251-4

    Article  CAS  Google Scholar 

  21. A.O. Yakubov, D.Y. Terekhov, A.A. Sherchenkov, S.A. Kozyukhin, P.I. Lazarenko, A.V. Babich, S.P. Timoshenkov, D.G. Gromov, A.S. Shuliatyev, Electrophysical properties of phase change memory materials on the pseudo-binary line GeTe-\(\text{ Sb }_2 \text{ Te }_3\). J. Phys. 643, 012104 (2015). https://doi.org/10.1088/1742-6596/643/1/012104

    Article  CAS  Google Scholar 

  22. D.M. Smilgies, N. Boudet, B. Struth, O. Konovalov, Troika II: a versatile beamline for the study of liquid and solid interfaces. J. Synchrotron. Radiat. 12, 329–339 (2005). https://doi.org/10.1107/S0909049505000361

    Article  CAS  Google Scholar 

  23. K. Hayashi, Review of the applications of x-ray refraction and the x-ray waveguide phenomenon to estimation of film structures. J. Phys. 22, 474006 (2010). https://doi.org/10.1088/0953-8984/22/47/474006

    Article  CAS  Google Scholar 

  24. R. Golovchak, Y.G. Choi, S. Kozyukhin, Yu. Chigirinsky, A. Kovalskiy, P. Xiong-Skiba, J. Trimble, R. Pafchek, H. Jain, Oxygen incorporation into GST phase-change memory matrix. Appl. Surf. Sci. 332, 533–541 (2015). https://doi.org/10.1016/j.apsusc.2015.01.203

    Article  CAS  Google Scholar 

  25. S. Kohara, K. Kato, S. Kimura, H. Tanaka, T. Usuki, K. Suzuya, H. Tanaka, Y. Moritomo, T. Matsunaga, N. Yamada, Y. Tanaka, H. Suematsu, M. Takata, Structural basis for the fast phase change of \(\text{ Ge }_2 \text{ Sb }_2 \text{ Te }_5\): ring statistics analogy between the crystal and amorphous states. Appl. Phys. Lett. 89, 201910 (2006). https://doi.org/10.1063/1.2387870

    Article  CAS  Google Scholar 

  26. S. Hosokawa, W.C. Pilgrim, A. Hohle, D. Szubrin, N. Boudet, J.F. Berar, K. Maruyama, Key experimental information on intermediate-range atomic structures in amorphous \(\text{ Ge }_2 \text{ Sb }_2 \text{ Te }_5\) phase change material. J. Appl. Phys. 111, 083517 (2012). https://doi.org/10.1063/1.3703570

    Article  CAS  Google Scholar 

  27. T. Nakaoka, H. Satoh, S. Honjo, H. Takeuchi, First-sharp diffraction peaks in amorphous GeTe and \(\text{ Ge }_2 \text{ Sb }_2 \text{ Te }_5\) films prepared by vacuum-thermal deposition. AIP Adv. 2, 042189 (2012). https://doi.org/10.1063/1.4773329

    Article  Google Scholar 

  28. S. Graulis, D. Chateigner, R.T. Downs, A.F.T. Yokochi, M. Quiros, L. Lutterotti, E. Manakova, J. Butkus, P. Moeck, A. Le Bail, Crystallography open database: an open-access collection of crystal structures. J. Appl. Crystallogr. 42, 726–729 (2009). https://doi.org/10.1107/S0021889809016690

    Article  CAS  Google Scholar 

  29. J.H. Eom, Y.G. Yoon, C. Park, H. Lee, J. Im, D.S. Suh, J.S. Noh, Y. Khang, J. Ihm, Global and local structures of the Ge-Sb-Te ternary alloy system for a phase-change memory device. Phys. Rev. B 73, 214202 (2006). https://doi.org/10.1103/PhysRevB.73.214202

    Article  CAS  Google Scholar 

  30. Z. Sun, S. Kyrsta, D. Music, R. Ahuja, J.M. Schneider, Structure of the Ge-Sb-Te phase-change materials studied by theory and experiment. Solid State Commun. 143, 240–244 (2007). https://doi.org/10.1016/j.ssc.2007.05.018

    Article  CAS  Google Scholar 

  31. C.M. Poffo, J.C. de Lima, S.M. Souza, D.M. Triches, Z.V. Borges, R.S. de Biasi, Synthesis and properties of nanostructured \(\text{ GeSb }_4 \text{ Te }_7\) prepared by mechanical alloying. J. Mater. Sci. 53, 13451–13463 (2018). https://doi.org/10.1007/s10853-018-2614-8

    Article  CAS  Google Scholar 

  32. S. Guerin, B. Hayden, D. Hewak, C. Vian, Synthesis and screening of phase change chalcogenide thin film materials for data storage. ACS Comb. Sci. 19, 478–491 (2017). https://doi.org/10.1021/acscombsci.7b00047

    Article  CAS  Google Scholar 

  33. M. Laurenzis, A. Heinrici, P.H. Bolivar, H. Kurz, S. Krysta, J.M. Schneider, Composition spread analysis of phase change dynamics in \(\text{ Ge }_x \text{ Sb }_y \text{ Te }_{1-x-y}\) films embedded in an optical multilayer stack. IEE Proc. 151, 394–397 (2004). https://doi.org/10.1049/ip-smt:20041082

    Article  CAS  Google Scholar 

  34. G. Porod, Die Rontgenkleinwinkelstreuung von dichtgepackten kolloiden Systemen - I. Teil Kolloid-Zeitschrift 124, 83–114 (1951). https://doi.org/10.1007/BF01512792

    Article  CAS  Google Scholar 

  35. Y. Choi, M. Jung, Y.K. Lee, Effect of heating rate on the activation energy for crystallization of amorphous Ge2Sb2Te5 thin film. Electrochem. Solid-State Lett. 12, F17–F19 (2009). https://doi.org/10.1149/1.3129137

    Article  CAS  Google Scholar 

  36. P. Guo, A.M. Sarangan, I. Agha, A review of germanium-antimony-telluride phase change materials for non-volatile memories and optical modulators. Appl. Sci. 9, 530 (2019). https://doi.org/10.3390/app9030530

    Article  CAS  Google Scholar 

  37. A.L. Patterson, The scherrer formula for X-ray particle size determination. Phys. Rev. 56, 978–982 (1939). https://doi.org/10.1103/PhysRev.56.978

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The study was carried out with the financial support of a Grant from the Russian Foundation for Basic Research (Project No. 20-03-00379). The authors are grateful to the staff of the Interdisciplinary Resource Center for Nanotechnology and the Center of X-ray diffraction studies at the Research park at the Saint Petersburg State University for preliminary research of Ge–Sb–Te films, as well as Saint Petersburg State University for financial support (Activity 6 - Grant for academic mobility 2018). Special thanks from I. I. Nikolaev for a personal scholarship from Petersburg Nuclear Physics Institute named by B.P. Konstantinov of NRC \({\ll }\)Kurchatov Institute\(\gg\) (2017-2019). AVK acknowledges partial support of this work by the Ministry of Science and Higher Education of the Russian Federation (Project No. FSZN-2020-0026). The authors are grateful to the European Synchrotron Radiation Facility for the opportunity to carry out of the diffraction measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr I. Lazarenko.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozyukhin, S.A., Nikolaev, I.I., Lazarenko, P.I. et al. Direct observation of amorphous to crystalline phase transitions in Ge–Sb–Te thin films by grazing incidence X-ray diffraction method. J Mater Sci: Mater Electron 31, 10196–10206 (2020). https://doi.org/10.1007/s10854-020-03565-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03565-7

Navigation