Skip to main content
Log in

Structural, DFT, vibrational spectroscopic, thermal, electrical and magnetic characterizations of hydrothermally grown CoCO3 microcrystals

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The minerals such as the CoCO3 can be utilized for the fabrication of lithium-grafted batteries and for a variety of food applications. In this study, we have successfully synthesized Cobalt carbonate crystals (CoCO3) using hydrothermal synthesis method. The synthesized micro-crystals consist of hexagonal structure symmetry. The XRD shows the single-phase hexagonal (R-3c) crystal with lattice constants a = 4.661 Å, b = 4.661 Å, and c = 14.96 Å. EDAX spectroscopy analysis confirms the presence of all the elements of sample. FE-SEM analysis suggests nearly rod-shaped crystals with ~ 29 µm average crystalline size. The Fourier Transform Infrared spectrum suggested existence of O–H, C–O etc. bonding. The TGA is carried out to study the thermal stability. The dielectric relaxation is well studied over large angular frequency range. Complex impedance spectrum of the synthesized microcrystals consists of single semi-circular arc due to the presence of grain only. The magnetic study has suggested paramagnetic nature of the sample. The theoretical study such as the density function theory has been carried out using the Quantum ESPRESSO. A reasonably good agreement is observed between experimentally obtained data and DFT data for optimized structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. F. Ozel, H. Kockar, S. Beyaz, J. Mater. Sci. 24, 3073 (2013)

    CAS  Google Scholar 

  2. A.C. Templeton, W.P. Wuelfing, R.W. Murray, Acc. Chem. Res. 33, 27 (2000)

    CAS  Google Scholar 

  3. J.J. Wu, Y.L. Lee, H.H. Chiang, D.K.P. Wong, J. Phys. Chem. B 110, 18108 (2006)

    CAS  Google Scholar 

  4. C. Burda, X. Chen, R. Narayanan, M.A. El-Sayed, Chem. Rev. 105, 1025 (2005)

    CAS  Google Scholar 

  5. H. Li, R. Liu, R.X. Zhao, Y.F. Zheng, W.X. Chen, Z.D. Xu, Cryst. Growth Des. 6, 2795 (2006)

    CAS  Google Scholar 

  6. Y.H. Tenga, S. Yamamoto, Y. Kusanoc, M. Azumaa, Y. Shimakawa, Mater. Lett. 64, 239 (2010)

    Google Scholar 

  7. F. Ozel, H. Kockar, O. Karaagac, J. Supercond. Nov. Magn. (2014). https://doi.org/10.1007/s10948-014-2707-9

    Article  Google Scholar 

  8. M. Garakani, S. Abouali, B. Zhang, C. Takagi, Z. Xu, J. Huang, Appl. Mater. Interfaces 6, 18971 (2014)

    CAS  Google Scholar 

  9. European food safety authority, EFSA J. 10, 2727 (2012)

    Google Scholar 

  10. Y. Wang, Z. Chang, Y. Zhang, B. Chen, L. Fu, Y. Zhu, L. Zhang, Y. Wu Sci. Rep. 7, 1 (2016)

    Google Scholar 

  11. M.S. Refat, S.M. Teleb, S.A. Sadik, Spectro Chem. Acta 60, 2803 (2004)

    CAS  Google Scholar 

  12. M.Y. Nassar, I.S. Ahmed, Polyhedron 30, 2431 (2011)

    CAS  Google Scholar 

  13. P. Hohenberg, W. Kohn, Phys. Rev. B 136, 864 (1964)

    Google Scholar 

  14. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. De Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, J. Phys. Condens. Matter. 21, 395502 (2009)

    Google Scholar 

  15. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    CAS  Google Scholar 

  16. J.D. Pack, H.J. Monkhorst, Phys. Rev. B 16, 1748 (1977)

    Google Scholar 

  17. R.M. Wentzcovitch, J.L. Martins, G.D. Price, Phys. Rev. Lett. 70, 3947 (1993)

    CAS  Google Scholar 

  18. J.D. Head, M.C. Zerner, Chem. Phys. Lett. 122, 264 (1985)

    CAS  Google Scholar 

  19. S. Baroni, S. de Gironcoli, A. Dal Corso, P. Giannozzi, Rev. Mod. Phys. 73, 515 (2001)

    CAS  Google Scholar 

  20. A. Morsali, A. Askarinejad, Chem. Eng. J. 150, 569 (2009)

    Google Scholar 

  21. K.T. Elhesen, A. Delahaya-vidal, P. Genin, M. Figlarz et al., Mater. Chem. 3, 883 (1993)

    Google Scholar 

  22. I.F. Barton, H. Yang, M.D. Barton, Can. Miner. 52, 653–670 (2014)

    CAS  Google Scholar 

  23. S. Chariton, V. Cerantola, L. Ismailova, E. Bykova, M. Bykov, I. Kupenko, C. McCammon, L. Dubrovinsky, Phys. Chem. Miner. 45, 59–68 (2018)

    Google Scholar 

  24. L. E. James, L. Crescentini, W.B. Fisher, Process for making a cobalt oxide catalyst. US 4389339

  25. J. Macdonald, R. Johnson, Impedance Spectroscopy Theory, Experiment, and Applications (Wiley, Hoboken, 2005), pp. 1–27

    Google Scholar 

  26. W. Chen, W. Zhu, O.K. Tan, F. Chan, J. Appl. Phys 108, 034101 (2010)

    Google Scholar 

  27. R. Gopalkrishnan, Y. Li, J. Smekens, A. Barhoum, G. Assche, N. Omar, J. Mierlo Ionics 25, 111 (2019)

    Google Scholar 

  28. E. Laouini, M. Hamdani, M.I. Pereira, J. Douch, M.H. Mendonca, Y. Berghoute, R.N. Singh, J. Appl. Electrochem. 38, 1485 (2008)

    CAS  Google Scholar 

  29. X. Liu, J. Jiang, L. Ai, J. Mater. Chem. A 3, 9707 (2015)

    CAS  Google Scholar 

  30. H.O. Jethava, D.K. Kanchan, M.J. Joshi, IJIRSET 5, 222 (2016)

    Google Scholar 

  31. H.O. Jethva, M.J. Joshi, Bulg. J. Phys. 5, 275 (2018)

    Google Scholar 

  32. S. Sen, R.N.P. Choudhary, Mater. Chem. Phys. 87, 256 (2004)

    CAS  Google Scholar 

  33. A. Ala’eddinsaif, Z. Jamal, Z. Sauli, Mater. Sci. Medzg. 17, 186 (2011)

    Google Scholar 

  34. A. Zaafouri, M. Magdiche, L. Mechi, M. Gargouri, Ionics 20, 1255 (2014)

    CAS  Google Scholar 

  35. K. Thakrar, D. Dhruv, K.N. Rathod, Z. Joshi, K. Gadani, D.D. Pandya, J.H. Markna, B.R. .Kataria, P.S. Solanki, D.G. Kuberker, N.A. Shah, J. Sol Gel Sci. Technol. 79, 144–150 (2016)

    CAS  Google Scholar 

  36. A.K. Roy, A. Singh, K. Kumari, K. Prasad, A. Prasad, J. Appl. Phys. 35, 4 (2013)

    Google Scholar 

  37. J. Lee, J.H. Hwang, J.J. Mashek, T.O. Mason, A.E. Miller, R.W. Siegel, J. Mater. Res 10, 2295 (1995)

    CAS  Google Scholar 

  38. J.H. Joshi, D.K. Kanchan, H.O. Jethva, M.J. Joshi, Mater. Res. Bull. 93, 63 (2017)

    CAS  Google Scholar 

  39. D. Xue, K. Kitamura, Solid State Commun. 122, 537–541 (2002)

    CAS  Google Scholar 

  40. K.P. Tank, B.V. Jogiya, D.K. Kanchan, M.J. Joshi, Solid State Phys. 209, 151 (2014)

    Google Scholar 

  41. A.K. Jonscher, Nature 267, 676 (1997)

    Google Scholar 

  42. S. Sen, R.N.P. Choudhary, J. Mater. Chem. Phys. 87, 256 (2004)

    CAS  Google Scholar 

  43. K.A. Mauritz, Macromolecules 22, 4483 (1989)

    CAS  Google Scholar 

  44. Y. Koseoglu, F. Kurtulus, H. Kockar, H. Guler, O. Karaagac, S. Kazan, B. Aktas, J. Supercond. Nov. Magn. 25, 2783 (2012)

    CAS  Google Scholar 

  45. D. A.Bhatt, C.Ta.i Bhat, Mater. Chem. Phys. 125, 347 (2011)

    Google Scholar 

  46. D. Alburquenque, E. Vargas, J.C. Denardin, J. Escrig, J.F. Marco, J. Ortiz, J.L. Gautier, Mater. Charact. 93, 191 (2014)

    CAS  Google Scholar 

  47. V.P. Senthil, J. Gajendiran, S.G. Raj, T. Shanmugavel, G.R. Kumar, C.P. Reddy, Chem. Phys. Lett. 695, 19 (2018)

    CAS  Google Scholar 

  48. L. Frolova, A. Derimova, T. Butyrina, Acta Phys. Pol. A 133, 1021 (2018)

    CAS  Google Scholar 

  49. A.S. Borovik-Romanov, Exp. Theor. Phys. 4, 531 (1957)

    CAS  Google Scholar 

  50. A.S. Borovik-Romanov, V.I. Ozhogin, J. Exp. Theor. Phys. 12, 18 (1961)

    Google Scholar 

  51. C. Kittel, Introduction to Solid State Physics, 8th edn. (Wiley Eastern, New Delhi, 2007)

    Google Scholar 

  52. B.D. Cullity, C.D. Graham, Introduction to Magnetic Materials (Wiley, Hoboken, 2011)

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to the University Grant Commission, New Delhi to provide the funding under Special Assisted program and Department of Science and Technology, Government of India for providing the funding under the FIST program to the Department of Physics, Saurashtra University, Rajkot. One of the authors (Mahatta Oza) is highly thankful to Prof. P.K. Jha and Mr. Som Narayan of Physics Department, M.S. University of Baroda, for his invaluable support. One of the authors (JHJ) is highly thankful to Mr. S.G. Khandelwal, Deputy Director, Forensic Science Laboratory, Ahmadabad for allowing him to carry out such research activity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. Oza.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oza, M.H., Kanchan, D.K., Joshi, J.H. et al. Structural, DFT, vibrational spectroscopic, thermal, electrical and magnetic characterizations of hydrothermally grown CoCO3 microcrystals. J Mater Sci: Mater Electron 31, 10177–10185 (2020). https://doi.org/10.1007/s10854-020-03563-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03563-9

Navigation