Skip to main content
Log in

Tuning of structural, optical, and impedance properties of CeO2 thin films by incorporation palladium ions

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Thin films of pure and Pd-doped CeO2 with different doping concentrations deposited via sol gel spin coating technique. The influence of Pd doping level (0, 2, 4 and 8%) on the physical characteristics was investigated of nanocrystalline CeO2 thin films. From X-ray diffraction (XRD) pattern, the (111) preferred oriented CeO2 cubic structure was observed in all thin films. Crystallite size decreased with increasing Pd doping from 67.41 to 41.67 nm, whereas the crystallinity of thin film increased with doping level. The field emission scanning electron microscopy (FESEM) analyses showed the uniform distribution of nanospherical grains, decreased in size and agglomerated of nanocrystallite with increasing Pd doping. Energy-dispersive X-ray (EDX) results revealed that the weight percentage of un-doped and Pd-doped CeO2 thin films was confirmed and very close to that in mixed precursor. The energy bandgap values of prepared thin films were measured as a function of Pd doping centration using UV–Vis spectroscopy. Energy bandgap as well as the transmission of CeO2 were increased with Pd doping level. The PL spectra show noticeable variations in intensity and red shift of the emission peaks upon Pd doping. These effects have been associated with structural modifications and defect states Pd-doped CeO2 thin films. The Nyquist plots suggest that the ionic conductivity through the grains is responsible in the conduction mechanism of the thin films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Venkateshan, C.B. Fitzgerald, J.M.D. Coey, Nature 430, 630 (2004)

    Google Scholar 

  2. H. Ohno, Science 281, 951 (1998)

    CAS  Google Scholar 

  3. U. Lampe, J. Gerblinger, H. Meixner, Sens. Actuators B 7, 787–791 (1992)

    CAS  Google Scholar 

  4. M. Yamashita, K. Kameyama, S. Yabe, S. Yoshida, Y. Fujishiro, T. Kawai, T. Sato, J. Mater. Sci. Lett. 37, 683 (2002)

    CAS  Google Scholar 

  5. R. Di Maggio, S. Rossi, L. Fedrizzi, P. Scardi, Surf. Coat. Technol. 89, 292 (1997)

    Google Scholar 

  6. R. Aguiar, F. Sanchez, C. Ferrater, M. Varela, Thin Solid Films 306, 74 (1997)

    CAS  Google Scholar 

  7. C.S. Oh, C.I. Kim, K.H. Kwon, J. Vac. Sci. Technol. A19, 1068 (2001)

    Google Scholar 

  8. A.M. Salvi, F. Decker, F. Varsano, G. Speranze, Surf. Interface Anal. 31, 255 (2001)

    CAS  Google Scholar 

  9. J.J. Roa, E. Giliolib, F. Bissoli, F. Pattini, S. Rampino, X.G. Capdevila, M. Segarra, Thin Solid Films 518, 227–232 (2009)

    CAS  Google Scholar 

  10. I. Szab, B. Nagy, G. Volksch, W. Holand, J. NonCryst, Solids 272, 191–199 (2000)

    Google Scholar 

  11. Y.S. Touloukian, R.K. Kirby, R.E. Taylor, P.D. Desai, Thermophysical properties of Matter Thermal Expansion (Metallic Elements and Alloys), vol. 12 (IFI/PLENUM, New York, 1977), p. 77

    Google Scholar 

  12. N. Ozer, Solar Energy Mater Solar Cells 68, 391–400 (2001)

    CAS  Google Scholar 

  13. B. Vodungbo, Y. Zheng, F. Vidal, D. Demaille, V.H. Etgens, D.H. Mosca, Appl. Phys. Lett. 90, 062510 (2007)

    Google Scholar 

  14. V. Fernandes, J.J. Klein, N. Mattoso, D.H. Mosca, E. Silveira, E. Ribeiro, W.H. Schreiner, J. Varalda, A.J.A. de Oliveira, Phys. Rev. B 75, 121304(R) (2007)

    Google Scholar 

  15. Q.Y. Wen, H.W. Zhang, Y.Q. Song, Q.H. Yang, H. Zhu, J.Q. Xiao, J. Phys.: Condens. Matter 19, 246205 (2007)

    Google Scholar 

  16. S. Debnath, M.R. Islam, M.S.R. Khan, Bull. Mater. Sci. 30, 315–319 (2007)

    CAS  Google Scholar 

  17. W. Xiaodong, L. Qing, W. Duan, J. Rare Earths 24, 549–553 (2006)

    Google Scholar 

  18. X. Zhang, J. Wei, H. Yang, X. Liu, W. Liu, C. Zhang, Y. Yang, Eur. J. Inorg. Chem. 2013, 4443–4449 (2013)

    CAS  Google Scholar 

  19. J. Tan, W. Zhang, Y.H. Lv, A.L. Xia, Mater. Res. 16, 689–694 (2013)

    CAS  Google Scholar 

  20. G. Hass, J.B. Ramsaay, R. Thun, J. Opt. Soc. Am. 48, 324 (1958)

    CAS  Google Scholar 

  21. D. Keomany, J.P. Pettit, D. Deroo, SPIE Proc. 2255, 513 (1994)

    Google Scholar 

  22. I. Porqueras, C. Person, C. Corbella, M. Vives, A. Pinyol, E. Bertran, Solid State Ionics 165, 131–137 (2003)

    CAS  Google Scholar 

  23. B. Tatar, E.D. Sam, K. Kutlu, M. Urgen, J. Mater. Sci. 43, 5102–5108 (2008)

    CAS  Google Scholar 

  24. A. Hartridge, M. Ghanashyam Krishna, A.K. Bhattacharya, J. Phys. Chem. Solids 59(6–7), 859–866 (1998)

    CAS  Google Scholar 

  25. M. Oikawa, S. Fujihara, J. Eur. Ceram. Soc. 25, 2921–2924 (2005)

    CAS  Google Scholar 

  26. X. Multone, Y. Luo, P. Hoffmann, Mater. Sci. Eng. B 146, 35–40 (2008)

    CAS  Google Scholar 

  27. R.D. Shannon, Acta Crystallogr. A 32, 751–765 (1976)

    Google Scholar 

  28. F.A. Al-Agel, E. Al-Arfaj, A.A. Al-Ghamdi, Y. Losovyj, L.M. Bronstein, W.E. Mahmoud, J. Magn. Magn. Mater. 360, 73–79 (2014)

    CAS  Google Scholar 

  29. H.P. Klug, L.E. Alexander, X-Ray Diffraction Procedures, 2nd edn. (Wiley, New York, 1974), pp. 687–703

    Google Scholar 

  30. S.M. Ali, S.M. Ramaya, N.U. Rehman, T.S. Al Khuraiji, M.A. Shar, A. Mahmood, A. Hassan, M. Riaz, Mater. Sci. Semicond. Process. 93, 44–49 (2019)

    CAS  Google Scholar 

  31. A. Sundaresan, R. Bhargavi, N. Rangarajan, U. Siddesh, C.N.R. Rao, Phys. Rev. B. 74, 161306 (2006)

    Google Scholar 

  32. M.Y. Ge, H. Wang, E.Z. Liu, J.F. Liu, J.Z. Jiang, Y.K. Li, Z.A. Xu, H.Y. Li, Appl. Phys. Lett. 93, 062505 (2008)

    Google Scholar 

  33. R.J.V. Overstraeten, R.P. Mertens, Heavy doping effects in silicon. Solid State Electron. 30, 1077–1087 (1987)

    Google Scholar 

  34. C. Mansilla, Solid State Sci. 11, 1456–1464 (2009)

    CAS  Google Scholar 

  35. Y.M. Hao, S.H. Lou, S.M. Zhou, R.J. Yuan, G.Y. Zhu, N. Li, Nanoscale Res. Lett. 7, 1–9 (2012)

    Google Scholar 

  36. S. Phokha, S. Pinitsoontorn, S. Maensiri, J. Appl. Phys. 112, 113904 (2012)

    Google Scholar 

  37. F. Meng, C. Zhang, Z. Fan, J. Gong, A. Li, Z. Ding, H. Tang, M. Zhang, G. Wu, J. Alloy. Comp. 647, 1013–1021 (2015)

    CAS  Google Scholar 

  38. P.P. Murmu, R.J. Mendelsberg, J. Kennedy, D.A. Carder, B.J. Ruck, A. Markwitz, R.J. Reeves, P. Malar, T. Osipowicz, J. Appl. Phys. 110, 033534 (2011)

    Google Scholar 

  39. L. Zang, Energy Efficiency and Renewable, Energy Through Nanotechnology (Springer-Verlag, London, 2011), p. 803

    Google Scholar 

  40. T. Suzuki, I. Kosacki, H.U. Anderson, Solid State Ionics 151, 111 (2002)

    CAS  Google Scholar 

  41. U. Rammelt, G. Reinhard, Electrochim. Acta 40, 505–511 (1995)

    CAS  Google Scholar 

  42. G. Perrier, R. Bettignies, S. Berson, N. Lemaître, S. Guillerez, Sol. Energy Mater. Sol. Cells 101, 210 (2012)

    CAS  Google Scholar 

  43. J.B. Jorcin, M.E. Orazem, N. Pébère, B. Tribollet, Electrochim. Acta 51, 1473 (2006)

    CAS  Google Scholar 

  44. A. Hassan, M. Muhyuddin, A. Rahman, M. Usman, M.A. Basit, S.W. Husain, J Mater. Sci. 31, 2625–2633 (2020)

    CAS  Google Scholar 

  45. M. Muhyuddin, M.T. Ahsan, I. Ali, T.F. Khan, M.A. Akram, M.A. Basite, Appl. Phys. A 125, 716 (2019)

    Google Scholar 

Download references

Acknowledgements

This work was supported by King Saud University, Deanship of Scientific Research, and College of Science Research Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Mansoor Ali.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, S.M., Khan, S.UD., AlGarawi, M.S. et al. Tuning of structural, optical, and impedance properties of CeO2 thin films by incorporation palladium ions. J Mater Sci: Mater Electron 31, 10031–10037 (2020). https://doi.org/10.1007/s10854-020-03547-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03547-9

Navigation