Skip to main content
Log in

Reentrant superconductivity in \(\hbox {YBa}_{2}\hbox {Cu}_{3}\hbox {O}_{7-\delta }\) microstructured particles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A reentrant superconducting effect was observed in YBCO particles as a consequence of their size and microstructure. It rises from the coexistence between bulk superconductivity and surface ferromagnetism, where the enhanced magneto-electric coupling induced by broken spatial-inversion symmetry in layers near structural defects plays a very important role on surface ferromagnetism. The study assumes grain boundaries inside the particles act as additional surface regions that enhance the ferromagnetic properties. Magnetic and superconducting properties as a function of particle size were studied. Particularly, the 385 nm particles which were the ones that exhibited the reentrant superconducting effect. The Ginzburg–Landau parameter and the critical temperatures are \(\textit{k}\sim 1.29 \pm .03, T _{c1}= 92 \pm 0.5\hbox { K}\), and \(T_{{c2}} \approx 10 \pm 3{\text{ K}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. H. Rogalla, P.H. Kes, 100 Years of Superconductivity (CRC Press Taylor and Francis Group, New York, 2012)

    Google Scholar 

  2. G. Riblet, K. Winzer, Solid State Commun. 9, 1663 (1971)

    Article  CAS  Google Scholar 

  3. W. Fertig, D. Johnston, L. DeLong, R. McCallum, M. Maple, B. Matthias, Phys. Rev. Lett. 38, 987 (1977)

    Article  CAS  Google Scholar 

  4. M. Ishikawa, Ø. Fischer, Solid State Commun. 23, 37 (1977)

    Article  CAS  Google Scholar 

  5. V. Zdravkov, A. Sidorenko, G. Obermeier, S. Gsell, M. Schreck, C. Müller, S. Horn, R. Tidecks, L. Tagirov, Phys. Rev. Lett. 97, 057004 (2006)

    Article  CAS  Google Scholar 

  6. S. Reich, G. Leitus, R. Popovitz-Biro, M. Schechter, Phys. Rev. Lett. 91, 147001 (2003)

    Article  CAS  Google Scholar 

  7. W.H. Li, C.W. Wang, C.Y. Li, C. Hsu, C. Yang, C.M. Wu, Phys. Rev. B 77, 094508 (2008)

    Article  Google Scholar 

  8. W.H. Li, C. Yang, F. Tsao, S. Wu, P. Huang, M. Chung, Y. Yao, Phys. Rev. B 72, 214516 (2005)

    Article  Google Scholar 

  9. Y. Yin, H. Liu, L. Xie, T. Su, M. Teng, X. Li, J. Phys. Chem. C 117, 3028 (2013)

    Article  CAS  Google Scholar 

  10. A. Shipra, Gomathi A. Sundaresan, C. Rao et al., Solid State Commun. 142, 685 (2007)

    Article  CAS  Google Scholar 

  11. S. Hasanain, N. Akhtar, A. Mumtaz, J. Nanopart. Res. 13, 1953 (2011)

    Article  CAS  Google Scholar 

  12. Z. Zhu, D. Gao, C. Dong, G. Yang, J. Zhang, J. Zhang, Z. Shi, H. Gao, H. Luo, D. Xue, Phys. Chem. Chem. Phys. 14, 3859 (2012)

    Article  CAS  Google Scholar 

  13. A. Stoneham, L. Smith, J. Phys. 3, 225 (1991)

    CAS  Google Scholar 

  14. A. Sundaresan, C. Rao, Nano Today 4, 96 (2009)

    Article  CAS  Google Scholar 

  15. A. Sundaresan, C. Rao, Solid State Commun. 149, 1197 (2009)

    Article  CAS  Google Scholar 

  16. W. Fan, L.J. Zou, Z. Zeng, Phys. C 492, 80 (2013)

    Article  CAS  Google Scholar 

  17. J. Coey, K. Wongsaprom, J. Alaria, M. Venkatesan, J. Phys. D 41, 134012 (2008)

    Article  Google Scholar 

  18. J. Osorio-Guillén, S. Lany, S. Barabash, A. Zunger, Phys. Rev. Lett. 96, 107203 (2006)

    Article  Google Scholar 

  19. C.D. Pemmaraju, S. Sanvito, Phys. Rev. Lett. 94, 217205 (2005)

    Article  Google Scholar 

  20. J. Wang, Multiferroic Materials Properties, Techniques, and Applications (CRC Press Taylor and Francis Group, New York, 2017)

    Google Scholar 

  21. S. Jin, T. Tiefel, R. Sherwood, M. Davis, R. Van Dover, G. Kammlott, R. Fastnacht, H. Keith, Appl. Phys. Lett. 52, 2074 (1988)

    Article  CAS  Google Scholar 

  22. E. Blinov, V. Fleisher, H. Huhtinen, R. Laiho, E. Lähderanta, P. Paturi, Y.P. Stepanov, L. Vlasenko, Supercond. Sci. Technol. 10, 818 (1997)

    Article  CAS  Google Scholar 

  23. A. Manthiram, J.B. Goodenough, Nature 329, 701 (1987)

    Article  CAS  Google Scholar 

  24. F. Gotor, P. Simon, N. Pellerin, P. Odier, P. Monod, J. Phys. Chem. Solids 58, 1469 (1997)

    Article  CAS  Google Scholar 

  25. M. Maple, W. Fertig, A. Mota, L. DeLong, D. Wohlleben, R. Fitzgerald, Solid State Commun. 11, 829 (1972)

    Article  CAS  Google Scholar 

  26. J. Wahle, N. Blümer, J. Schlipf, K. Held, D. Vollhardt, Phys. Rev B 58, 12749 (1998)

    Article  CAS  Google Scholar 

  27. T. Riseman, J. Brewer, K. Chow, W. Hardy, R. Kiefl, S. Kreitzman, R. Liang, W. MacFarlane, P. Mendels, G. Morris et al., Phys. Rev. B 52, 10569 (1995)

    Article  CAS  Google Scholar 

  28. H. Dersch, G. Blatter, Phys. Rev. B 38, 11391 (1988)

    Article  CAS  Google Scholar 

  29. L. Schneemeyer, J. Waszczak, T. Siegrist, R. Van Dover, L. Rupp, B. Batlogg, R.J. Cava, D. Murphy, Nature 328, 601 (1987)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by DGAPA-UNAM project IT100217 and CONACyT project 254280. Rodolfo E. López-Romero thanks to CONACyT-México for scholarship, Dr. F. Ascencio and R. Herrera for their help in DLS technique, Dr. F. Morales for their significant comments and Ana K. Bobadilla for helium supplies. We thanks to A. López and A. Pompa García for technical support.

Funding

The funding from the Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México [Project No. IT100217]. The funding from the project 254280 supported by Consejo Nacional de Ciencia y Tecnología (CONACyT-México).

Author information

Authors and Affiliations

Authors

Contributions

REL synthesized the samples and performed measurements. REL wrote the manuscript with the support of DYM and RE. All authors discussed the manuscript content. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Rodolfo E. López-Romero.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López-Romero, R.E., Medina, D.Y. & Escudero, R. Reentrant superconductivity in \(\hbox {YBa}_{2}\hbox {Cu}_{3}\hbox {O}_{7-\delta }\) microstructured particles. J Mater Sci: Mater Electron 31, 9622–9629 (2020). https://doi.org/10.1007/s10854-020-03505-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03505-5

Navigation