Skip to main content
Log in

Environment-friendly ZnO-based molecularly imprinting polymers fluorescence sensor for direct detection of sulfadimidine

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This work reports a molecularly imprinting polymer based on environmentally friendly and non-toxic ZnO quantum dots for the selective detection sulfadimidine. The MIP@ZnO was prepared by sol–gel method, which usedZnO quantum dots, TEOS, APTES, ammonia as signal materials, cross-linker, function monomer, and initiator, respectively. Result proved that MIP@ZnO exhibited excellent selective fluorescence quenching in the presence of sulfadimidine, good linear relationship in the range of 0–40 μmol L−1 with a correlation coefficient (R2) of 0.98547 was obtained, and the imprinting factor was 2.83. Furthermore, MIP@ZnO has been successfully applied for detection SM2 in real samples with the spiked recoveries ranging from 95.6 to 99.8% with RSD below 2.38%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. G. Xu, B. Zhang, X. Wang, N. Li, Y. Zhao, L. Liu, J.M. Lin, R.S. Zhao, Porous covalent organonitridic frameworks for solid-phase extraction of sulfonamide antibiotics. Mikrochim. Acta. 186, 1–7 (2018)

    Google Scholar 

  2. X. Guo, J. Wang, Sorption of antibiotics onto aged microplastics in freshwater and seawater. Mar. Pollut. Bull. 149, 110511–110519 (2019)

    Article  CAS  Google Scholar 

  3. S. Fekadu, E. Alemayehu, R. Dewil, B. Van der Bruggen, Pharmaceuticals in freshwater aquatic environments: a comparison of the African and European challenge. Sci. Total. Environ. 654, 324–337 (2019)

    Article  CAS  Google Scholar 

  4. A.I. Geller, M.C. Lovegrove, N. Shehab, L.A. Hicks, M.R.P. Sapiano, D.S. Budnitz, National estimates of emergency department visits for antibiotic adverse events among adults-United States, 2011–2015. J. Gen. Intern. Med. 33, 1060–1068 (2018)

    Article  Google Scholar 

  5. K. Chullasat, P. Nurerk, P. Kanatharana, P. Kueseng, T. Sukchuay, O. Bunkoed, Hybrid monolith sorbent of polypyrrole-coated graphene oxide incorporated into a polyvinyl alcohol cryogel for extraction and enrichment of sulfonamides from water samples. Anal. Chim. Acta. 961, 59–66 (2017)

    Article  CAS  Google Scholar 

  6. G. Font, A. Juan-Garcia, Y. Pico, Pressurized liquid extraction combined with capillary electrophoresis-mass spectrometry as an improved methodology for the determination of sulfonamide residues in meat. J. Chromatogr. A. 1159, 233–241 (2007)

    Article  CAS  Google Scholar 

  7. M. Cheng, G. Zeng, D. Huang, C. Lai, Y. Liu, C. Zhang, J. Wan, L. Hu, C. Zhou, W. Xiong, Efficient degradation of sulfamethazine in simulated and real wastewater at slightly basic pH values using Co-SAM-SCS/H2O2 Fenton-like system. Water Res. 138, 7–18 (2018)

    Article  CAS  Google Scholar 

  8. A. von Eyken, D. Furlong, S. Arooni, F. Butterworth, J.F. Roy, J. Zweigenbaum, S. Bayen, Direct injection high performance liquid chromatography coupled to data independent acquisition mass spectrometry for the screening of antibiotics in honey. J. Food Drug Anal. 27, 679–691 (2019)

    Article  Google Scholar 

  9. Y. Liu, X. Wang, Y. Li, X. Chen, Metabolomic analysis of short-term sulfamethazine exposure on marine medaka (Oryzias melastigma) by comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. Aquat. Toxicol. 198, 269–275 (2018)

    Article  CAS  Google Scholar 

  10. X. Wei, G. Xu, C. Gong, F. Qin, X. Gong, C. Li, Fabrication and evaluation of sulfanilamide-imprinted composite sensors by developing a custom-tailored strategy. Sens. Actuators B-Chem. 255, 2697–2703 (2018)

    Article  CAS  Google Scholar 

  11. Y. Kuang, X. Wang, X. Tian, C. Yang, Y. Li, Y. Nie, Silica-embedded CdTe quantum dots functionalized with rhodamine derivative for instant visual detection of ferric ions in aqueous media. J. Photochem. Photobiol. A 372, 140–146 (2019)

    Article  CAS  Google Scholar 

  12. C. Qiu, Y. Xing, W. Yang, Z. Zhou, Y. Wang, H. Liu, W. Xu, Surface molecular imprinting on hybrid SiO2-coated CdTe nanocrystals for selective optosensing of bisphenol A and its optimal design. Appl. Surf. Sci. 345, 405–417 (2015)

    Article  CAS  Google Scholar 

  13. X. Liu, T. Wang, Y. Lu, W. Wang, Z. Zhou, Y. Yan, Constructing carbon dots and CdTe quantum dots multi-functional composites for ultrasensitive sensing and rapid degrading ciprofloxacin. Sens. Actuators B-Chem. 289, 242–251 (2019)

    Article  CAS  Google Scholar 

  14. Y. Xu, J. Wang, Y. Lu, X. Dai, Y. Yan, Preparation of functionalized double ratio fluorescent imprinted sensors for visual determination and recognition of dopamine in human serum. Spectrochim. Acta A 219, 225–231 (2019)

    Article  CAS  Google Scholar 

  15. Y.L.T. Ngo, W.M. Choi, J.S. Chung, S.H. Hur, Highly biocompatible phenylboronic acid-functionalized graphitic carbon nitride quantum dots for the selective glucose sensor. Sens. Actuators B-Chem. 282, 36–44 (2019)

    Article  CAS  Google Scholar 

  16. M. Ali, I. Shah, S.W. Kim, M. Sajid, J.H. Lim, K.H. Choi, Quantitative detection of uric acid through ZnO quantum dots based highly sensitive electrochemical biosensor. Sens. Actuators A-Phys. 283, 282–290 (2018)

    Article  CAS  Google Scholar 

  17. Y. Liang, Y. Duan, C. Fan, H. Dong, J. Yang, J. Tang, G. Tang, W. Wang, N. Jiang, Y. Cao, Preparation of kasugamycin conjugation based on ZnO quantum dots for improving its effective utilization. Chem. Eng. J. 361, 671–679 (2019)

    Article  CAS  Google Scholar 

  18. Z.G. Zang, X. Zeng, J. Du, M. Wang, X. Tang, Femtosecond laser direct writing of microholes on roughened ZnO for output power enhancement of InGaN light-emitting diodes. Opt. Lett. 41, 3463–3466 (2016)

    Article  CAS  Google Scholar 

  19. H.X. Wang, S.L. Cao, B. Yang, H.Y. Li, M. Wang, X.F. Hu, K. Sun, Z.G. Zang, NH4Cl-modified ZnO for high-performance CsPbIBr2 perovskite solar cells via low-temperature process. Solar RRL 4, 1–8 (2020)

    Article  Google Scholar 

  20. B. Vahid, Specific fluorescence probe for direct recognition of dimethoate using molecularly imprinting polymer on ZnO quantum dots. J. Fluoresc. 27, 1339–1347 (2017)

    Article  CAS  Google Scholar 

  21. S.C.G. Kiruba Daniel, A. Kumar, K. Sivasakthi, C.S. Thakur, Handheld low-cost electronic device for rapid, real-time fluorescence-based detection of Hg2+, using aptamer-templated ZnO quantum dots. Sens. Actuators B-Chem. 290, 73–78 (2019)

    Article  CAS  Google Scholar 

  22. J. Lei, M.C. Xu, S.J. Hu, Theoretical design of magnetically ultrasensitive two-dimensional ZnO biosensor for in vivo NO detection by electron paramagnetic resonance technique. Sens. Actuators B-Chem. 273, 448–454 (2018)

    Article  CAS  Google Scholar 

  23. J. Ashley, M.A. Shahbazi, K. Kant, V.A. Chidambara, A. Wolff, D.D. Bang, Y. Sun, Molecularly imprinted polymers for sample preparation and biosensing in food analysis: progress and perspectives. Biosens. Bioelectron. 91, 606–615 (2017)

    Article  CAS  Google Scholar 

  24. T. Eren, N. Atar, M.L. Yola, H. Karimi-Maleh, A sensitive molecularly imprinted polymer based quartz crystal microbalance nanosensor for selective determination of lovastatin in red yeast rice. Food Chem. 185, 430–436 (2015)

    Article  CAS  Google Scholar 

  25. J.J. BelBruno, Molecularly imprinted polymers. Chem. Rev. 119, 94–119 (2019)

    Article  CAS  Google Scholar 

  26. S. Xu, H. Lu, J. Li, X. Song, A. Wang, L. Chen, S. Han, Dummy molecularly imprinted polymers-capped CdTe quantum dots for the fluorescent sensing of 2,4,6-trinitrotoluene. ACS Appl. Mater. Interfaces 5, 8146–8154 (2013)

    Article  CAS  Google Scholar 

  27. R. Long, T. Li, C. Tong, L. Wu, S. Shi, Molecularly imprinted polymers coated CdTe quantum dots with controllable particle size for fluorescent determination of p-coumaric acid. Talanta 196, 579–584 (2019)

    Article  CAS  Google Scholar 

  28. J. Hassanzadeh, B.R. Moghadam, A. Sobhani-Nasab, F. Ahmadi, M. Rahimi-Nasrabadi, Specific fluorometric assay for direct determination of amikacin by molecularly imprinting polymer on high fluorescent g-C3N4 quantum dots. Spectrochim. Acta A 214, 451–458 (2019)

    Article  CAS  Google Scholar 

  29. Y. Wang, Z. Zhou, W. Xu, Y. Luan, Y. Lu, Y. Yang, T. Liu, S. Li, W. Yang, Surface molecularly imprinted polymers based ZnO quantum dots as fluorescence sensors for detection of diethylhexyl phthalate with high sensitivity and selectivity. Polym. Int. 67, 1003–1010 (2018)

    Article  CAS  Google Scholar 

  30. E.M.A. Manikandan, B. Meenatchi, S. Vadivel, S.K. Jaganathan, R. Ladchumananandasivam, M. Henini, M. Maaza, J.S. Aanand, Rare earth element (REE) lanthanum doped zinc oxide (La: ZnO) nanomaterials: synthesis structural optical and antibacterial studies. J. Alloys Compd. 723, 1155–1161 (2017)

    Article  CAS  Google Scholar 

  31. G. Wu, Y. Song, J. Wan, C. Zhang, F. Yin, Synthesis of ultrafine ZnO nanoparticles supported on nitrogen-doped ordered hierarchically porous carbon for supercapacitor. J. Alloys Compd. 806, 464–470 (2019)

    Article  CAS  Google Scholar 

  32. E. Rahmati, Z. Rafiee, A biocompatible high surface area ZnO-based molecularly imprinted polymer for the determination of meloxicam in water media and plasma. New J. Chem. 43, 8492–8501 (2019)

    Article  CAS  Google Scholar 

  33. D. Zhao, H. Song, L. Hao, X. Liu, L. Zhang, Y. Lv, Luminescent ZnO quantum dots for sensitive and selective detection of dopamine. Talanta 107, 133–139 (2013)

    Article  CAS  Google Scholar 

  34. A. Sun, J. Chai, T. Xiao, X. Shi, X. Li, Q. Zhao, D. Li, J. Chen, Development of a selective fluorescence nanosensor based on molecularly imprinted-quantum dot optosensing materials for saxitoxin detection in shellfish samples. Sens. Actuators B-Chem. 258, 408–414 (2018)

    Article  CAS  Google Scholar 

  35. T. Le, Q. Sun, Y. Xie, L.H. Shu, J. Liu, J. Xu, J. Xiong, X.D. Cao, A highly sensitive aptasensor for sulfamethazine detection using an enzyme-linked aptamer assay. Food Anal. Method. 11, 2778–2787 (2018)

    Article  Google Scholar 

  36. H.G. Baoshan, Du, Novel electrochemical aptasensor for ultrasensitive detection of sulfadimidine based on covalently linked multi-walled carbon nanotubes and in situ synthesized gold nanoparticle composites. Anal. Bioanal. Chem. 410, 2901–2910 (2018)

    Article  Google Scholar 

  37. Z. Zhou, H. Ying, Y. Liu, W. Xu, Y. Yang, Y. Luan, Y. Lu, T. Liu, S. Yu, W. Yang, Synthesis of surface molecular imprinting polymer on SiO2-coated CdTe quantum dots as sensor for selective detection of sulfadimidine. Appl. Surf. Sci. 404, 188–196 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was funded by National Natural Science Foundation of China (Grant Nos. 21607013, 5102026), the Natural Science Basic Research Plan in Shaanxi Province of China (2020JM-221), the Fund Project of Shaanxi Key Laboratory of Land Consolidation (2018-JC01), the Fundamental Research Funds for the Central Universities, CHD (300102310203), and Colation and Entrepreneurship Project (201810710127, 201910710466).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiahong Zheng or Kangkang Cheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, J., Cheng, K., Wu, Y. et al. Environment-friendly ZnO-based molecularly imprinting polymers fluorescence sensor for direct detection of sulfadimidine. J Mater Sci: Mater Electron 31, 9550–9558 (2020). https://doi.org/10.1007/s10854-020-03497-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03497-2

Navigation