Skip to main content
Log in

Effects of iron doping on the oxidation/reduction properties of delafossite CuAlO2 synthesized via a solid-state reaction

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

CuAlO2 has received a wealth of interdependent research associated with hydrogen-based catalysis in the chemical industry. Herein, Fe-doped CuAlO2 is demonstrated to reduce the redox temperature for delafossite CuAlO2. Time-resolved X-ray absorption spectroscopy and hydrogen temperature-programmed reduction were used to characterize the redox properties, respectively. Delafossite CuAlO2, with and without Fe doping at 10 at% (CuAl0.9Fe0.1O2), was synthesized via a one-step solid-state reaction method. The results demonstrate that the redox temperature can be reduced by ~ 60 K for the 10 at% Fe-doped catalyst. The findings of this contribution offer a new approach to circumvent the high temperatures associated with the redox processes, and furthermore, offer a design basis for the development of new catalyst systems with enhanced regeneration abilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R. Nagarajan, N. Duan, M.K. Jayaraj, J. Li, K.A. Vanaja, A. Yokochi, A. Draeseke, J. Tateb, A.W. Sleighta, Int. J. Inorg. Mater. 3, 265 (2001)

    Article  CAS  Google Scholar 

  2. M. Marquardt, N. Ashmore, D. Cann, Thin Solid Films. 496, 146 (2006)

    Article  CAS  Google Scholar 

  3. I. Sullivan, B. Zoellner, P.A. Maggard, Chem. Mater. 28, 5999 (2016)

    Article  CAS  Google Scholar 

  4. M. Singh, A.R. Rao, V. Dutta, Mater. Lett. 62, 3613 (2008)

    Article  CAS  Google Scholar 

  5. S. Thirumalairajan, V.R. Mastelaro, C.A. Escanhoela, ACS Appl. Mater. Inter. 6, 21739 (2014)

    Article  CAS  Google Scholar 

  6. N. Daichakomphu, R. Sakdanuphab, A. Harnwunggmoung, S. Pinitsoontorn, A. Sakulkalavek, J. Alloy. Compd. 753, 630 (2018)

    Article  CAS  Google Scholar 

  7. J. Pellicer-Porres, A. Segura, A.S. Gilliland, A. Muñoz, P. Rodríguez-Hernández, D. Kim, M.S. Lee, T.Y. Kim, Appl. Phys. Lett. 88, 1 (2006)

    Article  Google Scholar 

  8. S. Kameoka, M. Okada, A.P. Tsai, Catal. Lett. 120, 252 (2008)

    Article  CAS  Google Scholar 

  9. N. Koriche, A. Bouguelia, A. Aider, M. Trari, Int. J. Hydrog. Energy 30, 693 (2005)

    Article  CAS  Google Scholar 

  10. M.N. Huda, Y. Yan, M.M. Al-Jassim, J. Appl. Phys. 109, 1 (2011)

    Article  Google Scholar 

  11. S. Qing, X. Hou, Y. Liu, L. Li, X. Wang, Z. Gao, W. Fan, Chem. Commun. 54, 12242 (2018)

    Article  CAS  Google Scholar 

  12. Y. Lu, K. Maeda, K. Sagara, L. Hao, Y. Jin, Mater. Sci. Forum. 750, 134 (2013)

    Article  Google Scholar 

  13. K. Park, K.Y. Ko, W.-S. Seo, Mater. Sci. Eng. B. 129, 1 (2006)

    Article  CAS  Google Scholar 

  14. S. Yanagiya, N. Van Nong, J. Xu, N. Pryds, Materials 3, 318 (2010)

    Article  CAS  Google Scholar 

  15. C. Liu, D.T. Morelli, J. Electron. Mater. 40, 678 (2011)

    Article  CAS  Google Scholar 

  16. Y.C. Liou, L.S. Chang, Y.M. Lu, H.C. Tsai, U.R. Lee, Ceram. Int. 38, 3619 (2012)

    Article  CAS  Google Scholar 

  17. J. Zhai, H. Wang, W. Su, J. Liu, Y. Zhou, T. Wang, Y. Li, Y. Zhang, C. Wang, J. Mater. Sci-Mater. Electron. 28, 5053 (2017)

    Article  CAS  Google Scholar 

  18. T. Joshi, T.R. Senty, R. Trappen, J. Zhou, S. Chen, P. Ferrari, P. Borisov, X. Song, M.B. Holcomb, A.D. Bristow, A.L. Cabrera, D. Lederman, J. Appl. Phys. 117, 1 (2015)

    Article  Google Scholar 

  19. M.K. Majee, P.A. Bhobe, U.P. Deshpande, A.K. Nigam, J. Appl. Phys. 122, 1 (2017)

    Article  Google Scholar 

  20. A. Barnabe, E. Mugnier, L. Presmanes, P. Tailhades, Mater. Lett. 60, 3468 (2006)

    Article  CAS  Google Scholar 

  21. E. Mugnier, A. Barnabe, P. Tailhades, Solid State Ionics. 177, 607 (2006)

    Article  CAS  Google Scholar 

  22. S. Kato, R. Fujimaki, M. Ogasawara, T. Wakabayashi, Y. Nakahara, S. Nakata, Appl. Catal. B-Environ. 89, 183 (2009)

    Article  CAS  Google Scholar 

  23. S. Kato, R. Kawashima, M. Ogasawara, J. Mater. Sci. 50, 2876 (2015)

    Article  CAS  Google Scholar 

  24. B.J. Ingram, B.J. Harder, N.W. Hrabe, T.O. Mason, Chem. Mater. 16, 5623 (2004)

    Article  CAS  Google Scholar 

  25. M.F. Iozzi, P. Vajeeston, R. Vidya, P. Ravindranab, H. Fjellv, RSC Adv. 5, 1366 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the King Mongkut’s Institute of Technology Ladkrabang, Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aparporn Sakulkalavek.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daichakomphu, N., Sakulkalavek, A. & Sakdanuphab, R. Effects of iron doping on the oxidation/reduction properties of delafossite CuAlO2 synthesized via a solid-state reaction. J Mater Sci: Mater Electron 31, 9481–9485 (2020). https://doi.org/10.1007/s10854-020-03488-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03488-3

Navigation