Skip to main content

Advertisement

Log in

Synthesis of MoS2/CdS nanospheres enhanced photocatalytic hydrogen evolution under visible light

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, CdS nanoparticles were synthesized by hydrothermal method and MoS2/CdS photocatalytic composite materials were synthesized by solvent-thermal method, which was applied to hydrogen evolution under visible light. The crystal phase structure of samples was characterized by XRD. The composition and chemical valence of the sample were analyzed and determined by XPS and EDS. The morphology and structure of the catalyst were analyzed by field emission scanning electron microscope (SEM) and transmission electron microscope (TEM). The photocatalytic properties were characterized by UV–Vis spectrophotometer, fluorescence emission spectrogram, and photocurrent experiment. The highest hydrogen production of MoS2/CdS (7 wt%) composite photocatalyst was about 2480 μmol after 4 h illumination. After 5 cycles, the photocatalyst of MoS2/CdS (7 wt%) composites were stable for hydrogen production within 20 h, indicating that the catalyst had good stability. The primary mechanism of hydrogen production by MoS2/CdS composite as photocatalyst was proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972)

    Article  CAS  Google Scholar 

  2. Z. Jin, Q. Jian, Q. Guo, Enhanced photocatalytic hydrogen evolution over semi-crystalline tungsten phosphide. Int. J. Hydrog. Energy 44, 26848–26862 (2019)

    Article  CAS  Google Scholar 

  3. F. Li, R. Zhao, B. Yang, W. Wang, Y. Liu, J. Gao, Y. Gong, Facial synthesis of dandelion-like g-C3N4/Ag with high performance of photocatalytic hydrogen production. Int. J. Hydrog. Energy 44, 30185–30195 (2019)

    Article  CAS  Google Scholar 

  4. F.J. Zhang, X. Li, X.Y. Sun, C. Kong, W.J. Xie, Z. Li, J. Liu, Surface partially oxidized MoS2 nanosheets as a higher efficient cocatalyst for photocatalytic hydrogen production. Appl. Surf. Sci. 487, 734–742 (2019)

    Article  CAS  Google Scholar 

  5. J. Xiang, M. Dan, Q. Cai, S. Yu, Y. Zhou, Graphene oxide induced dual cocatalysts formation on manganese sulfide with enhanced photocatalytic hydrogen production from hydrogen sulfide. Appl. Surf. Sci. 494, 700–707 (2019)

    Article  CAS  Google Scholar 

  6. Z. Huang, Y. Zhang, H. Dai, Y. Wang, C. Qin, W. Chen, Y. Zhou, S. Yuan, Highly dispersed Pd nanoparticles hybridizing with 3D hollow-sphere g-C3N4 to construct 0D/3D composites for efficient photocatalytic hydrogen evolution. J. Catal. 378, 331–340 (2019)

    Article  CAS  Google Scholar 

  7. E. Karamian, S. Sharifnia, Hydrogen evolution using CdWO4 modified by BiFeO3 in the presence of potassium iodide; a combination of photocatalytic and non-photocatalytic water splitting. Int. J. Hydrog. Energy 44, 25717–25729 (2019)

    Article  CAS  Google Scholar 

  8. Q. Xiang, F. Li, D. Zhang, Y. Liao, H. Zhou, Plasma-based surface modification of g-C3N4 nanosheets for highly efficient photocatalytic hydrogen evolution. Appl. Surf. Sci. 495, 143520 (2019)

    Article  CAS  Google Scholar 

  9. L. Cheng, D. Zhang, Y. Liao, F. Li, H. Zhang, Q. Xiang, Constructing functionalized plasmonic gold/titanium dioxide nanosheets with small gold nanoparticles for efficient photocatalytic hydrogen evolution. J. Colloid Interface Sci. 555, 94–103 (2019)

    Article  CAS  Google Scholar 

  10. W. Ou, J. Pan, Y. Liu, S. Li, H. Li, W. Zhao, J. Wang, C. Song, Y. Zheng, C. Li, Two-dimensional ultrathin MoS2-modified black Ti3+–TiO2 nanotubes for enhanced photocatalytic water splitting hydrogen production. J. Energy Chem. 43, 188–194 (2020)

    Article  Google Scholar 

  11. S.Y. Arzate Salgado, R.M.R. Zamora, R. Zanella, J. Peral, S. Malato, M.I. Maldonado, Photocatalytic hydrogen production in a solar pilot plant using a Au/TiO2 photo catalyst. Int. J. Hydrog. Energy. 41, 11933–11940 (2016)

    Article  CAS  Google Scholar 

  12. J. Shen, R. Wang, Q. Liu, X. Yang, H. Tang, J. Yang, Accelerating photocatalytic hydrogen evolution and pollutant degradation by coupling organic co-catalysts with TiO2. Chin. J. Catal. 40, 380–389 (2019)

    Article  CAS  Google Scholar 

  13. H. Gong, Q. Liu, C. Huang, NiSe as an effective co-catalyst coupled with TiO2 for enhanced photocatalytic hydrogen evolution. Int. J. Hydrog. Energy 44, 4821–4831 (2019)

    Article  CAS  Google Scholar 

  14. M.C. Wu, W.K. Huang, T.H. Lin, Y.J. Lu, Photocatalytic hydrogen production and photodegradation of organic dyes of hydrogenated TiO2 nanofibers decorated metal nanoparticles. Appl. Surf. Sci. 469, 34–43 (2019)

    Article  CAS  Google Scholar 

  15. M. Ahmed, G. Xinxin, A review of metal oxynitrides for photocatalysis. Inorg. Chem. Front. 3, 578–590 (2016)

    Article  CAS  Google Scholar 

  16. A. Fuertes, Metal oxynitrides as emerging materials with photocatalytic and electronic properties. Mater. Horiz. 2, 453–461 (2015)

    Article  CAS  Google Scholar 

  17. A. Ganguly, O. Anjaneyulu, K. Ojha, A.K. Ganguli, Oxide-based nanostructures for photocatalytic and electrocatalytic applications. CrystEngComm 17, 8978–9001 (2015)

    Article  CAS  Google Scholar 

  18. X. Wang, S. Blechert, M. Antonietti, Polymeric graphitic carbon nitride for heterogeneous photocatalysis. ACS Catal. 2, 1596–1606 (2012)

    Article  Google Scholar 

  19. Y. Zheng, L. Lin, B. Wang, X. Wang, Graphitic carbon nitride polymers toward sustainable photoredox catalysis. Angew. Chem. Int. Ed. 54, 12868–12884 (2015)

    Article  CAS  Google Scholar 

  20. M. Yin, W. Zhang, F. Qiao, J. Sun, Y. Fan, Z. Li, Hydrothermal synthesis of MoS2-NiS/CdS with enhanced photocatalytic hydrogen production activity and stability. J. Solid State Chem. 270, 531–538 (2019)

    Article  CAS  Google Scholar 

  21. Y. Xu, Y. Huang, B. Zhang, Rational design of semiconductor-based photocatalysts for advanced photocatalytic hydrogen production: the case of cadmium chalcogenides. Inorg. Chem. Front. 3, 591–615 (2016)

    Article  CAS  Google Scholar 

  22. Y.J. Yuan, D. Chen, Z.T. Yu, Z.G. Zou, Cadmium sulfide-based nanomaterials for photocatalytic hydrogen production. J. Mater. Chem. A 6, 11606–11630 (2018)

    Article  CAS  Google Scholar 

  23. D. Luo, Q. Zheng, Z. Zhang, Z. Guo, X. Wei, W. Zhen, X. Zhang, Amide–induced monodispersed Pt(100) nanoparticles oaded on graphene surface for enhanced photocatalytic hydrogen evolution. Int. J. Hydrog. Energy 44, 28123–28133 (2019)

    Article  CAS  Google Scholar 

  24. X. Liu, X. Liang, P. Wang, B. Huang, X. Qin, X. Zhang, Y. Dai, Highly efficient and noble metal-free NiS modified MnxCd1-xS solid solutions with enhanced photocatalytic activity for hydrogen evolution under visible light irradiation. Appl. Catal. B 203, 282–288 (2017)

    Article  CAS  Google Scholar 

  25. Q. Wang, G. Yun, Y. Bai, N. An, Y. Chen, R. Wang, Z. Lei, W. Shang, CuS, NiS as co-catalyst for enhanced photocatalytic hydrogen evolution over TiO2. Int. J. Hydrog. Energy 39, 13421–13428 (2014)

    Article  CAS  Google Scholar 

  26. Y.J. Yuan, Z. Li, S. Wu, D. Chen, L.X. Yang, D. Cao, W.G. Tu, Z.T. Yu, Z.G. Zou, Role of two-dimensional nanointerfaces in enhancing the photocatalytic performance of 2D–2D MoS2/CdS photocatalysts for H2 production. Chem. Eng. J. 350, 335–343 (2018)

    Article  CAS  Google Scholar 

  27. S. Thakur, T. Kshetri, N.H. Kim, J.H. Lee, Sunlight-driven sustainable production of hydrogen peroxide using a CdS-graphene hybrid photocatalyst. J. Catal. 345, 78–86 (2017)

    Article  CAS  Google Scholar 

  28. X. Liu, Z. Xing, Y. Zhang, Z. Li, X. Wu, S. Tan, X. Yu, Q. Zhu, W. Zhou, Fabrication of 3D flower-like black N-TiO2-x@ MoS2 for unprecedented-high visible-light-driven photocatalytic performance. Appl. Catal. B 201, 119–127 (2017)

    Article  CAS  Google Scholar 

  29. L. Huang, L. Ai, M. Wang, J. Jiang, S. Wang, Hierarchical MoS2 nanosheets integrated Ti3C2MXenes for electrocatalytic hydrogen evolution. Int. J. Hydrog. Energy 44, 965–976 (2019)

    Article  CAS  Google Scholar 

  30. Y. Li, L. Wang, T. Cai, S. Zhang, Y. Liu, Y. Song, X. Dong, L. Hu, Glucose-assisted synthesize 1D/2D nearly vertical CdS/MoS2 heterostructures for efficient photocatalytic hydrogen evolution. Chem. Eng. J. 321, 366–374 (2017)

    Article  CAS  Google Scholar 

  31. X.L. Yin, L. Li, W.J. Jiang, Y. Zhang, X. Zhang, L.J. Wan, J.S. Hu, MoS2/CdS nanosheets-on-nanorod heterostructure for highly efficient photocatalytic H2 generation under visible light irradiation. ACS Appl. Mater. Interfaces 8, 15258–15266 (2016)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangjie Jin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, X., Li, G. Synthesis of MoS2/CdS nanospheres enhanced photocatalytic hydrogen evolution under visible light. J Mater Sci: Mater Electron 31, 9377–9384 (2020). https://doi.org/10.1007/s10854-020-03477-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03477-6

Navigation