Skip to main content
Log in

Influence of Mn doping on dielectric properties, conduction mechanism and photocatalytic nature of gadolinium-based orthochromites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The samples of manganese (Mn)-doped gadolinium chromite [GdCr1−xMnxO3 (x = 0, 0.1, 0.2 and 0.3)] are prepared through sol–gel auto combustion route. The influence of Mn-doping in GdCrO3 is studied in respect of structural, dielectric, electrical and photocatalytic studies. Raman spectra assured the formation of single-phase orthorhombic structure with Pbnm space group and Raman vibration modes for GdCrO3 shift on Mn doping which may be attributed to the influence of the lattice strain, defects, and crystallite size. Dielectric constant (ε′), dissipation factor (tanδ) and AC conductivity (σac) are investigated as a function of frequency as well as temperature. Dielectric constant, energy dissipation factor and AC conductivity of pristine sample GdCrO3 show relatively higher values but these values decrease with the increase in Mn doping. The dielectric constant as a function of temperature for all the investigated samples peaks around 250 °C which may be attributed to the high temperature phase transformation. These peaks are observed to shift toward lower temperature with the increase in Mn-doping. The enhancement in AC conductivity is noticed for all the samples with the rise in temperature for the probing frequencies. The non-overlapping small polaron tunneling (NSPT) and correlated barrier hopping (CBH) models dominate the conduction mechanism in these samples. An increase in the experimental values of the hopping energy is observed with the increase Mn concentration for CBH as well as NSPT models. A systematic reduction in activation energy with frequency is noticed for all the samples except for GdCr0.9Mn0.1O3 sample. Real (Z′) and imaginary (Z″) values of impedance are found to reduce with the increase in frequency up to a certain limiting range and then become almost frequency independent at higher frequencies. Nyquist plots of the samples show single semicircular behaviour that indicates the dominance of grain boundary resistance as compared to grain resistance in this system. The grain and grain boundary resistances are determined, with the help of equivalent circuit designed using Zview software, to study the contribution of the grains and grain boundaries to the conductivity. Photo-degradation of Congo red dye under visible light irradiation was used to investigate the photocatalytic activity of the GdCrO3 and GdCr0.9Mn0.1O3 samples. The results confirmed that the catalytic function of the GdCrO3 enhances on Mn doping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. R.H. Mitchell, Perovskites Modern and Ancient (Almaz Press, Thunder Bay, 2002)

    Google Scholar 

  2. R. Saha, A. Sundaresan, C.N.R. Rao, Novel features of multiferroic and magnetoelectric ferrites and chromites exhibiting magnetically driven ferroelectricity. Mater. Horiz. 1, 20–31 (2014)

    Article  CAS  Google Scholar 

  3. C.N.R. Rao, A. Sundaresan, R. Saha, Multiferroic and magnetoelectric oxides: the emerging scenario. J. Phys. Chem. Lett. 3, 2237–2246 (2012)

    Article  CAS  Google Scholar 

  4. V.K. Tripathi, R. Nagarajan, Correlating the influence of two magnetic ions at the A-site with the electronic, magnetic and catalytic properties in Gd1–xDy xCrO3. ACS Omega 2, 2657–2664 (2017)

    Article  CAS  Google Scholar 

  5. R.J. Cava, Dielectric materials for applications in microwave communications. J. Mater. Chem. 11, 54–62 (2001)

    Article  CAS  Google Scholar 

  6. P.-G. Margareta et al., The role of Cr/Co substitution on dielectric properties of gadolinium orthochromite. Phys. Scr. 91, 045805 (2016)

    Article  CAS  Google Scholar 

  7. H.M. El-Mallah, AC electrical conductivity and dielectric properties of perovskite (Pb, Ca) TiO3 ceramic. Acta Phys. Pol. A 122, 174–179 (2012)

    Article  CAS  Google Scholar 

  8. Y. Ota, K. Kakimoto, H. Ohsato, T. Okawa, Low-temperature sintering of Ba6− 3xSm8+ 2xTi18O54 microwave dielectric ceramics by B2O3 and GeO2 addition. J. Eur. Ceram. Soc. 24, 1755–1760 (2004)

    Article  CAS  Google Scholar 

  9. F.S. Galasso, Structure, Properties and Preparation of Perovskite-Type Compounds, Chapter 2, 1st edn. (Pergamon Press, New York, 1969), pp. 3–49

    Book  Google Scholar 

  10. K. Tsushima, K. Aoyagi, S. Sugano, Magnetic and magneto-optical properties of some rare earth and yttrium orthochromites. J. Appl. Phys. 41, 1238–1240 (1970)

    Article  CAS  Google Scholar 

  11. K. Sardar, M.R. Lees, R.J. Kashtiban, J. Sloan, R.I. Walton, Direct hydrothermal synthesis and physical properties of rare-earth and yttrium orthochromite perovskites. Chem. Mater. 23, 48–56 (2011)

    Article  CAS  Google Scholar 

  12. J.R. Sahu, C.R. Serrao, N. Ray, U.V. Waghmarec, C.N.R. Rao, Rare earth chromites: a new family of multiferroics. J. Mater. Chem. 17, 42–44 (2007)

    Article  CAS  Google Scholar 

  13. A.K. Tripathi, H.B. Lal, Electrical transport in light rare-earth orthochromites. J. Mat. Sci. 17, 1595–1609 (1982)

    Article  CAS  Google Scholar 

  14. H.B. Lal, R.D. Dwivedi, K. Gaur, Pyroelectric and dielectric properties of some light rare-earth orthochromites. J. Mater. Sci. Mater. Electron. 1, 204–208 (1990)

    Article  CAS  Google Scholar 

  15. S. Mahana, U. Manju, D. Topwal, GdCrO3: a potential candidate for low temperature magnetic refrigeration. J. Phys. D 51, 305002 (2018)

    Article  CAS  Google Scholar 

  16. L.H. Yin, J. Yang, X.C. Kan, W.H. Song, J.M. Dai, Y.P. Sun, Giant magnetocaloric effect and temperature induced magnetization jump in GdCrO3 single crystal. J. Appl. Phys. 117, 133901 (2015)

    Article  CAS  Google Scholar 

  17. K. Omri, I. Najeh, L. El Mir, Influence of annealing temperature on the microstructure and dielectric properties of ZnO nanoparticles. Ceram. Int. 42, 8940–8948 (2016)

    Article  CAS  Google Scholar 

  18. K. Maeda, Photocatalytic water splitting using semiconductor particles: history and recent developments. J. Photochem. Photobiol. C 12, 237–268 (2011)

    Article  CAS  Google Scholar 

  19. W. Hou, S.B. Cronin, A review of surface plasmon resonance-enhanced photocatalysis. Adv. Funct. Mater. 23, 1612–1619 (2013)

    Article  CAS  Google Scholar 

  20. F.E. Osterloh, Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem. Soc. Rev. 42, 2294–2320 (2013)

    Article  CAS  Google Scholar 

  21. J. Chena, Z. He, G. Li, T. An, H. Shi, Y. Li, Visible-light-enhanced photothermocatalytic activity of ABO3-type perovskites for the decontamination of gaseous styrene. Appl Catal. B 209, 146–154 (2017)

    Article  CAS  Google Scholar 

  22. R. Shi, G.I.N. Waterhouse, T. Zhang, Recent progress in photocatalytic CO2 reduction over perovskite oxides. Sol. RRL 1, 1700126 (2017)

    Article  CAS  Google Scholar 

  23. P. Kanhere, Z. Chen, A review on visible light active perovskite-based photocatalysts. Molecules 19, 19995–20022 (2014)

    Article  CAS  Google Scholar 

  24. K. Omri, F. Alharbi, Synthesis and effect of temperature on morphological and photoluminescence properties of TiO2 nanoparticles. Appl. Phys. A 125, 696 (2019)

    Article  CAS  Google Scholar 

  25. A. Alqahtani, S. Husain, A. Somvanshi, W. Khan, Structural, morphological, thermal and optical investigations on Mn doped GdCrO3. J. Alloys Compd. 804, 401–414 (2019)

    Article  CAS  Google Scholar 

  26. V.S. Bhadram, B. Rajeswaran, A. Sundaresan, C. Narayana, Spin-phonon coupling in multiferroic RCrO3 (RY, Lu, Gd, Eu, Sm): a Raman study. Europhys. Lett. 101, 17008 (2013)

    Article  CAS  Google Scholar 

  27. M.V. Abrashev, J. Bäckström, L. Börjesson, V.N. Popov, R.A. Chakalov, N. Kolev, R.-L. Meng, M.N. Iliev, Raman spectroscopy of CaMnO3: mode assignment and relationship between Raman line intensities and structural distortions. Phys. Rev. B 65, 184301 (2002)

    Article  CAS  Google Scholar 

  28. E. Anastassakis, A. Cantarero, M. Cardona, Piezo-Raman measurements and anharmonic parameters in silicon and diamond. Phys. Rev. B 41, 7529 (1990)

    Article  CAS  Google Scholar 

  29. M. Udagawa, N. Koshizuka, T. Tsushima, Influence of magnetic ordering on the phonon Raman spectra in YCrO3 and GdCrO3. Solid State Commun. 16, 779–783 (1975)

    Article  CAS  Google Scholar 

  30. M.C. Weber, J. Kreisel, P.A. Thomas, M. Newton, K. Sardar, R.I. Walton, Phonon Raman scattering of RCrO3 perovskites (R= Y, La, Pr, Sm, Gd, Dy, Ho, Yb, Lu). Phys. Rev. B 85, 054303 (2012)

    Article  CAS  Google Scholar 

  31. A. Jaiswal, R. Das, K. Vivekanand, T. Maity, P.M. Abraham, S. Adyanthaya, P. Poddar, Magnetic and dielectric properties and Raman spectroscopy of GdCrO3 nanoparticles. J. Appl. Phys. 107, 013912 (2010)

    Article  CAS  Google Scholar 

  32. B.B. Dash, S. Ravi, Structural, magnetic and electrical properties of Fe substituted GdCrO3. Solid State Sci. 83, 192–200 (2018)

    Article  CAS  Google Scholar 

  33. M. Šćepanović, M. Grujić-Brojčin, Z. Dohčević-Mitrovićand, Z.V. Popović, Investigation of vibrational and electronic properties of oxide nanopowders by spectroscopic methods. J. Phys. Conf. Ser. 253, 1–10 (2010)

    Article  CAS  Google Scholar 

  34. M. Abushad, W. Khan, S. Naseem, M. Shahid Husain, A.A. Nadeem, Influence of Mn doping on microstructure, optical, dielectric and magnetic properties of BiFeO3 nanoceramics synthesized via sol–gel method. Ceram. Int. 45, 7437–7445 (2019)

    Article  CAS  Google Scholar 

  35. S. Butkewitsch, J. Scheinbeim, Dielectric properties of a hydrated sulfonated poly (styrene–ethylene/butylenes–styrene) triblock copolymer. Appl. Surf. Sci. 252, 8277–8286 (2006)

    Article  CAS  Google Scholar 

  36. M. Arshad, A.S. Ahmed, A. Azam, A.H. Naqvi, Exploring the dielectric behavior of Co doped ZnO nanoparticles synthesized by wet chemical route using impedance spectroscopy. J. Alloys Compd. 577, 469–474 (2013)

    Article  CAS  Google Scholar 

  37. A. Kyritsis, P. Pissis, J. Grammatikakis, Dielectric relaxation spectroscopy in poly (hydroxyethyl acrylates)/water hydrogels. J. Polym. Sci. B 33, 1737–1750 (1995)

    Article  CAS  Google Scholar 

  38. A.E. Bekheet, N.A. Hegab, Ac conductivity and dielectric properties of Ge20Se75In5 films. Vacuum 83, 391–396 (2008)

    Article  CAS  Google Scholar 

  39. I. Khan, S. Khan, W. Khan, Temperature-dependent dielectric and magnetic properties of Mn doped zinc oxide nanoparticles. Mater Sci Semicond Process 26, 516–526 (2014)

    Article  CAS  Google Scholar 

  40. S. Bindra Narang, D. Kaur, Dielectric investigations of lanthanides (ln= Sm, Nd and Gd) substituted barium titanate microwave ceramics. Integr Ferroelectr 105, 87–98 (2009)

    Article  CAS  Google Scholar 

  41. A.J. Moulson, J.M. Herbert, Electroceramics: Materials, Properties Applications (Wiley, New York, 2003)

    Book  Google Scholar 

  42. N.A. Hegab, H.M. El-Mallah, AC conductivity and dielectric properties of amorphous Te42 As36 Ge10 Si12 glass. Acta Phys. Pol. A 116, 1048–1052 (2009)

    Article  CAS  Google Scholar 

  43. W.T.R.W. Shockley, W.T. Read Jr., Statistics of the recombinations of holes and electrons. Phys. Rev. 87, 835 (1952)

    Article  CAS  Google Scholar 

  44. A.K. Jonscher, The ‘universal’ dielectric response. Nature 267, 673–679 (1977)

    Article  CAS  Google Scholar 

  45. G. Anjum, R. Kumar, S. Mollah, D.K. Shukla, S. Kumar, C.G. Lee, Structural, dielectric, and magnetic properties of La0.8Bi0.2Fe1−xMnxO3 (00 ≤ x ≤ 04) multiferroics. J. Appl. Phys. 107, 103916 (2010)

    Article  CAS  Google Scholar 

  46. K. Omri, A. Bettaibi, K. Khirouni, L. El Mir, The optoelectronic properties and role of Cu concentration on the structural and electrical properties of Cu doped ZnO nanoparticles. Phys. B 537, 167–175 (2018)

    Article  CAS  Google Scholar 

  47. M. Naseem Siddique, A. Ahmed, P. Tripathi, Electric transport and enhanced dielectric permittivity in pure and Al doped NiO nanostructures. J. Alloys Compd. 735, 516–529 (2018)

    Article  CAS  Google Scholar 

  48. R. Mguedla, A.B.J. Kharrat, M. Saadi, K. Khirouni, N. Chniba-Boudjada, W. Boujelben, Structural, electrical, dielectric and optical properties of PrCrO3 ortho-chromite. J. Alloys Compd. 812, 152130 (2020)

    Article  CAS  Google Scholar 

  49. A. Smith, J.-F. Baumard, P. Abelard, Ac impedance measurements and V-I characteristics for Co-, Mn-, or Bi-doped ZnO. J. Appl. Phys. 65, 5119–5125 (1989)

    Article  CAS  Google Scholar 

  50. T. Bak, J. Nowotny, C.C. Sorrell, Electrical properties of metal oxides at elevated temperatures. Key Eng. Mater. 125, 1–80 (1997)

    Google Scholar 

  51. R.C. Kambale, P.A. Shaikh, C.H. Bhosale, K.Y. Rajpure, Y.D. Kolekar, Dielectric properties and complex impedance spectroscopy studies of mixed Ni–Co ferrites. Smart Mater. Struct. 18, 085014 (2009)

    Article  CAS  Google Scholar 

  52. S. Kirkpatrick Kelly, T. Mason, Impedance spectroscopy study of sintering in Bi-doped ZnO. J. Am. Ceram. Soc. 77, 1493–1498 (1994)

    Article  Google Scholar 

  53. G. Brankovic, Z. Brankovic, V.D. Jovic, J.A. Varela, Fractal approach to AC impedance spectroscopy studies of ceramic materials. J. Electroceram. 7, 89–94 (2001)

    CAS  Google Scholar 

  54. K. Kumari, A. Prasad, K. Prasad, Dielectric, impedance/modulus and conductivity studies on [Bi0.5(Na1-xKx)0.5]0.94Ba0.06TiO3, (0.16≤ x≤ 0.20) lead-free ceramics. Am. J. Mater. Sci. 6, 1–18 (2016)

    CAS  Google Scholar 

  55. M. Pecovska-Gjorgjevich, S. Aleksovska, S. Dimitrovska-Lazova, Impedance and AC conductivity of GdCr1−x CoxO3 (x= 0, 0.33, 0.5, 0.67 and 1) perovskites. J. Am. Ceram. Soc. 97, 3864–3871 (2014)

    Article  CAS  Google Scholar 

  56. P. Stonehart, P.A. Zucks, Sintering and recrystallization of small metal particles Loss of surface area by platinum-black fuel-cell electrocatalysts. Electrochim. Acta 17, 2333–2351 (1972)

    Article  CAS  Google Scholar 

  57. M. George, S.S. Nair, K.A. Malini, P.A. Joy, M.R. Anantharaman, Finite size effects on the electrical properties of sol–gel synthesized CoFe2O4 powders: deviation from Maxwell-Wagner theory and evidence of surface polarization effects. J. Phys. D 40, 1593 (2007)

    Article  CAS  Google Scholar 

  58. K.M. Parida, A. Nashim, S. Mahanta, Visible-light driven Gd2 Ti2O7/GdCrO3 composite for hydrogen evolution. Dalton Trans. 40, 12839–12845 (2011)

    Article  CAS  Google Scholar 

  59. T. Arakawa, S. Tsuchi-Ya, J. Shiokawa, Catalytic activity of rare-earth orthoferrites and orthochromites. Mater. Res. Bull. 16, 97–103 (1981)

    Article  CAS  Google Scholar 

  60. Z. Hou, F. Chen, J. Wang, C.P. François-Xavier, T. Wintgens, Novel Pd/GdCrO3 composite for photo-catalytic reduction of nitrate to N2 with high selectivity and activity. Appl. Catal. B 232, 124–134 (2018)

    Article  CAS  Google Scholar 

  61. M. Shaban, M.R. Abukhadra, S.S. Ibrahim, M.G. Shahie, Photocatalytic degradation and photo-Fenton oxidation of Congo red dye pollutants in water using natural chromite response surface optimization. Appl. Water Sci. 7, 4743–4756 (2017)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahid Husain.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1411 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qahtan, A.A.A., Husain, S., Somvanshi, A. et al. Influence of Mn doping on dielectric properties, conduction mechanism and photocatalytic nature of gadolinium-based orthochromites. J Mater Sci: Mater Electron 31, 9335–9351 (2020). https://doi.org/10.1007/s10854-020-03474-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03474-9

Navigation