Skip to main content
Log in

Achieving excellent wide-range efficient microwave absorption property by synthesis of Fe-doped CuAlO2 powders via a facile sol–gel route

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

CuAlO2, with a relative higher conductivity than other ceramics, is a potential candidate in microwave absorption fields. Herein, to enhance the wide-range efficient microwave absorption property of CuAlO2 powders, Fe-doped CuAlO2 powders were synthesized via a facile sol–gel method. The X-ray diffraction results displayed that 5 at.% Fe doping CuAlO2 powders maintained the original delafossite structure and excessive Fe doping could destroy the structure of CuAlO2. When the Fe doping content increased to 20 at.%, FeAl2O4 phase formed. The Fe doping had significant effects on the electromagnetic parameters of samples. Compared with pure CuAlO2, the Fe-doped CuAlO2 powders have a higher ε″ and µ″, which is beneficial to improve the electromagnetic absorption property. The calculated reflection loss curves demonstrated that the sample with at.% Fe doping displayed the most excellent microwave absorption property in thickness of 3.93 mm, showing a minimum reflection loss of − 20.5 dB at the frequency of 9.86 GHz and reflection loss below − 10 dB in the whole measured frequency. Compared with other potential high temperature microwave absorption materials, Fe-doped CuAlO2 powders exhibit a wide-range microwave absorption property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Q. Fan, L. Zhang, H. Xing, H. Wang, X. Ji, J. Mater. Sci.: Mater. Electron. 31, 3005 (2020)

    CAS  Google Scholar 

  2. L. Zhou, J. Yu, M. Chen, H. Wang, Z. Wang, X. Su, J. Mater. Sci.: Mater. Electron. 31, 2446 (2020)

    CAS  Google Scholar 

  3. T. Zhu, S. Chang, Y.F. Song, M. Lahoubi, W. Wang, Chem. Eng. J. 373, 755 (2019)

    Article  CAS  Google Scholar 

  4. H.B. Zhao, J.B. Cheng, J.Y. Zhu, Y.Z. Wang, J. Mater. Chem. C 7, 441 (2019)

    Article  CAS  Google Scholar 

  5. X. Xiao, X. Li, G. Yu, J. Wang, G. Yan, Z. Wang, H. Guo, J. Power Sources 438, 227019 (2019)

    Article  CAS  Google Scholar 

  6. H. Zhao, Y. Cheng, W. Liu, L. Yang, B. Zhang, L.P. Wang, G. Ji, Z.J. Xu, Nano-Micro Lett. 11, 24 (2019)

    Article  CAS  Google Scholar 

  7. Y. Zhang, S. Gao, H. Xing, H. Li, J. Alloys Compd. 801, 609 (2019)

    Article  CAS  Google Scholar 

  8. H. Zhang, B. Wang, A. Feng, N. Zhang, Z. Jia, Z. Huang, X. Liu, G. Wu, Composites B 167, 690 (2019)

    Article  CAS  Google Scholar 

  9. X. Zeng, G. Jiang, L. Zhu, C. Wang, M. Chen, R. Yu, ACS Appl. Nano Mater. 2, 5475 (2019)

    Article  CAS  Google Scholar 

  10. J. Yan, Y. Huang, C. Chen, X. Liu, H. Liu, Carbon 152, 545 (2019)

    Article  CAS  Google Scholar 

  11. C. Li, J. Su, X. Jiang, Z. Zhang, L. Yu, Ceram. Int. 45, 18572 (2019)

    Article  CAS  Google Scholar 

  12. W. Zhou, R. Yin, L. Long, H. Luo, W. Hu, Y. Ding, Y. Li, Ceram. Int. 44, 12301 (2018)

    Article  CAS  Google Scholar 

  13. J. Su, W. Zhou, Y. Liu, Y. Qing, F. Luo, D. Zhu, Sur. Coat. Technol. 270, 39 (2015)

    Article  CAS  Google Scholar 

  14. L. Zhou, J. Huang, H. Wang, M. Chen, Y. Dong, F. Zheng, J. Mater. Sci.: Mater. Electron. 30, 1896 (2018)

    Google Scholar 

  15. L. Zhou, J. Huang, X. Wang, G. Su, J. Qiu, Y. Dong, J. Alloys Compd. 774, 813 (2019)

    Article  CAS  Google Scholar 

  16. Q. Wen, W. Zhou, J. Su, Y. Qing, F. Luo, D. Zhu, J. Alloys Compd. 666, 359 (2016)

    Article  CAS  Google Scholar 

  17. M. Aziziha, R. Beesley, J.R. Magers, N. Mottaghi, M.B. Holcomb, J.P. Lewis, M.S. Seehra, M.B. Johnson, J. Magn. Magn. Mater. 471, 495 (2019)

    Article  CAS  Google Scholar 

  18. R. Liu, Y. Li, B. Yao, Z. Ding, Y. Jiang, L. Meng, R. Deng, L. Zhang, Z. Zhang, H. Zhao, L. Liu, ACS Appl. Mater. Interfaces 9, 12608 (2017)

    Article  CAS  Google Scholar 

  19. T.H. Lee, S.M. Hwang, M.J. Yoo, J. Eur. Ceram. Soc. 40, 1390 (2020)

    Article  Google Scholar 

  20. N. Daichakomphu, A. Harnwunggmoung, N. Chanlek, R. Sakdanuphab, A. Sakulkalavek, J. Phys. Chem. Solids 134, 29 (2019)

    Article  CAS  Google Scholar 

  21. M. Aziziha, S.A. Byard, R. Beesely, J.P. Lewis, M.S. Seehra, M.B. Johnson, AIP Adv. 9, 035030 (2019)

    Article  Google Scholar 

  22. N. Daichakomphu, R. Sakdanuphab, A. Harnwunggmoung, Y. Puarporn, N. Chanlek, A. Sakulkalavek, Solid State Ionics 328, 17 (2018)

    Article  CAS  Google Scholar 

  23. C. Taddee, T. Kamwanna, V. Amornkitbamrung, Appl. Surf. Sci. 380, 237 (2016)

    Article  CAS  Google Scholar 

  24. J. Luo, Y.J. Lin, Appl. Phys. A 122, 163 (2016)

    Article  Google Scholar 

  25. F. Lin, C. Gao, X. Zhou, W. Shi, A. Liu, J. Alloys Compd. 581, 502 (2013)

    Article  CAS  Google Scholar 

  26. C.K. Ghosh, S.R. Popuri, T.U. Mahesh, K.K. Chattopadhyay, J. Sol–Gel. Sci. Technol. 52, 75 (2009)

    Article  CAS  Google Scholar 

  27. D.Y. Shahriari, A. Barnabè, T.O. Mason, K.R. Poeppelmeier, Inorg. Chem. 40, 5734 (2001)

    Article  CAS  Google Scholar 

  28. L. Dloczik, Y. Tomm, R. Könenkamp, M.C. Lux-Steiner, T. Dittrich, Thin Solid Films 451, 116 (2004)

    Article  Google Scholar 

  29. D. Mateos, B. Valdez, J.R. Castillo, N. Nedev, M. Curiel, O. Perez, A. Arias, H. Tiznado, Ceram. Int. 45, 11403 (2019)

    Article  CAS  Google Scholar 

  30. R. Itteboina, T.K. Sau, Mater. Today Proc. 9, 458 (2019)

    Article  CAS  Google Scholar 

  31. T. TANGCHAROEN, C. J. T-THIENPRASERT, KONGMARK, J. Adv. Ceram. 8, 352 (2019)

    Article  CAS  Google Scholar 

  32. D. Zhao, F. Luo, W. Zhou, D. Zhu, Surf. Coat. Technol. 205, 4254 (2011)

    Article  CAS  Google Scholar 

  33. M. Yang, W. Zhou, F. Luo, D. Zhu, J. Am. Ceram. Soc. 102, 4048 (2019)

    Article  CAS  Google Scholar 

  34. Q. Wen, W. Zhou, H. Gao, Y. Zhou, F. Luo, D. Zhu, Z. Huang, Y. Qing, Appl. Phys. A 125, 413 (2019)

    Article  Google Scholar 

  35. D. Chen, F. Luo, W. Zhou, D. Zhu, Mater. Lett. 221, 172 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Natural Science Basic Research Plan in Shaanxi Province of China (Program No. 2017JQ5078), supported by the fund of the State Key Laboratory of Solidification Processing in NWPU No. SKLSP201836, and the research starting foundation from Shaanxi University of Science and Technology (Grant No.2016BJ-30).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinbu Su.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, J., He, L., Zhou, W. et al. Achieving excellent wide-range efficient microwave absorption property by synthesis of Fe-doped CuAlO2 powders via a facile sol–gel route. J Mater Sci: Mater Electron 31, 9328–9334 (2020). https://doi.org/10.1007/s10854-020-03472-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03472-x

Navigation