Skip to main content
Log in

MP as a current collector to prepare high-performance SnO2–GO/MP electrode

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Using graphite oxide (GO) as a support for tin oxide, SnO2–GO materials were prepared by spray drying. The multi-wall carbon nanotube fiber paper (MP) instead of copper foil current collector loaded SnO2–GO materials. The MP is rough and porous surface increases the contact between the SnO2–GO materials and the current collector, providing more ion channels. The fluffy and porous structure inside the MP can not only increase the storage of the electrolyte, but also serve as a buffer matrix for the volume expansion of tin oxide. By calculation, the loading amount of the active material was 1.51 mg/cm2. The SnO2–GO/MP batteries have shown high specific capacity (2032.81 mAh g−1 of 100 mAh g−1), excellent cycle performance (827.76 mAh g−1 after 100 cycles), excellent coulombic efficiency (98.31%), and low internal resistance in repeated electrochemical tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. B.C.H. Steele, Materials for electrochemical energy conversion and storage systems. Ceram. Int. 19(4), 269–277 (1993)

    Article  CAS  Google Scholar 

  2. B.C.H. Steele, Materials for electrochemical energy conversion and storage systems. Ceram. Int. 19(4), 269–277 (1993)

    Article  CAS  Google Scholar 

  3. C. Zhang, W. Lv, Y. Tao, Q.H. Yang, Towards superior volumetric performance: design and preparation of novel carbon materials for energy storage. Energy Environ. Sci. 8, 1390–1403 (2015)

    Article  CAS  Google Scholar 

  4. J.B. Goodenough, Y. Kim, Challenges for rechargeable Li batteries. Chem. Mater. 22, 587–603 (2010)

    Article  CAS  Google Scholar 

  5. C. Zhang, X. Peng, Z. Guo, C. Cai, Z. Chen, D. Wexler, H. Liu, Carbon-coated SnO2/graphene nanosheets as highly reversible anode materials for lithium ion batteries. Carbon 50(5), 1897–1903 (2012)

    Article  CAS  Google Scholar 

  6. H.-X. Zhang, C. Feng, Y.-C. Zhai, K.-L. Jiang, Q.-Q. Li, S.-S. Fan, Adv. Mater. 21, 2299 (2009)

    Article  CAS  Google Scholar 

  7. Z. Chen, M. Zhou, Y. Cao, X. Ai, H. Yang, J. Liu, Adv. Energy Mater. 2, 95 (2012)

    Article  CAS  Google Scholar 

  8. L. Yang, K. Chen, T. Dong et al., One-pot synthesis of SnO2/C nanocapsules composites as anode materials for lithium-ion batteries. J. Nanosci. Nanotechnol. 16(2), 1768 (2016)

    Article  CAS  Google Scholar 

  9. F. Han, W.C. Li, M. Li et al., Fabrication of superior-performance SnO2@ C composites for lithium-ion anodes using tubular mesoporous carbon with thin carbon walls and high pore volume. J. Mater. Chem. 22(19), 9645 (2012)

    Article  CAS  Google Scholar 

  10. J. Yao, X. Shen, B. Wang et al., In situ, chemical synthesis of SnO2-graphene nanocomposite as anode materials for lithium-ion batteries. Electrochem. Commun. 11(10), 1849 (2009)

    Article  CAS  Google Scholar 

  11. N. Liu et al., A pomegranate-inspired nanoscale design for large-volumechange lithium battery anodes. Nat. Nanotechnol. 9, 187–192 (2014)

    Article  CAS  Google Scholar 

  12. L. Zhang, H.B. Wu, S. Madhavi, H.H. Hng, X.W. Lou, Formation of Fe2O3 microboxes with hierarchical shell structures from metal-organic frameworks and their lithium storage properties. J. Am. Chem. Soc. 134, 17388–17391 (2012)

    Article  CAS  Google Scholar 

  13. G.Q. Tan et al., Freestanding three-dimensional core-shell nanoarrays for lithium-ion battery anodes. Nat. Commun. 7, 11774 (2016)

    Article  CAS  Google Scholar 

  14. X. Zhu, Y. Zhu, S. Murali et al., Reduced graphene oxide/tin oxide composite as an enhanced anode material for lithium ion batteries prepared by homogenous coprecipitation. J. Power Sources 196(15), 6473–6477 (2011)

    Article  CAS  Google Scholar 

  15. S. Sladkevich, J. Gun, P.V. Prikhodchenko et al., Peroxide induced tin oxide coating of graphene oxide at room temperature and its application for lithium ion batteries. Nanotechnology 23(48), 485601 (2012)

    Article  CAS  Google Scholar 

  16. L. Fan, X. Li, Y. Cui et al., Tin oxide/graphene aerogel nanocomposites building superior rate capability for lithium ion batteries. Electrochim. Acta 176, 610–619 (2015)

    Article  CAS  Google Scholar 

  17. C. Tan, J. Cao, A.M. Khattak et al., High-performance tin oxide-nitrogen doped graphene aerogel hybrids as anode materials for lithium-ion batteries. J. Power Sources 270, 28–33 (2014)

    Article  CAS  Google Scholar 

  18. M. Yao, K. Okuno, T. Iwaki, T. Awazu, T. Sakai, Long cycle-life LiFePO4/Cu-Sn lithium ion battery using foam-type three-dimensional current collector. J. Power Sources 195(7), 2077–2081 (2010)

    Article  CAS  Google Scholar 

  19. H. Park, J.H. Um, H. Choi, W.S. Yoon, Y.E. Sung, H. Choe, Hierarchical micro-lamella-structured 3D porous copper current collector coated with tin for advanced lithium-ion batteries. Appl. Surf. Sci. 399, 132–138 (2017)

    Article  CAS  Google Scholar 

  20. Y. Sun, J. Wang, B. Zhao, R. Cai, R. Ran, Z. Shao, Binder-free α-MoO 3 nanobelt electrode for lithium-ion batteries utilizing van der Waals forces for film formation and connection with current collector. J. Mater. Chem. A 1(15), 4736–4746 (2013)

    Article  CAS  Google Scholar 

  21. B. Zhao, G. Zhang, J. Song et al., Bivalent tin ion assisted reduction for preparing graphene/SnO2 composite with good cyclic performance and lithium storage capacity. Electrochim. Acta 56(21), 7340–7346 (2011)

    Article  CAS  Google Scholar 

  22. B. Zhao, Z. Wang, S. Wang et al., Sandwiched spherical tin dioxide/graphene with a three-dimensional interconnected closed pore structure for lithium storage. Nanoscale 10(34), 16116–16126 (2018)

    Article  CAS  Google Scholar 

  23. D. Song, S. Wang, R. Liu et al., Ultra-small SnO2 nanoparticles decorated on three-dimensional nitrogen-doped graphene aerogel for high-performance bind-free anode material. Appl. Surf. Sci. 478, 290–298 (2019)

    Article  CAS  Google Scholar 

  24. Y. Jiang, Y. Wan, W. Jiang et al., Stabilizing the reversible capacity of SnO2/graphene composites by Cu nanoparticles. Chem. Eng. J. 367, 45–54 (2019)

    Article  CAS  Google Scholar 

  25. Z. Wang, D. Song, J. Si et al., One-step hydrothermal reduction synthesis of tiny Sn/SnO2 nanoparticles sandwiching between spherical graphene with excellent lithium storage cycling performances. Electrochim. Acta 292, 72–80 (2018)

    Article  CAS  Google Scholar 

  26. B. Zhao, H. Zhuang, Y. Yang et al., Composition-dependent lithium storage performances of SnS/SnO2 heterostructures sandwiching between spherical graphene. Electrochim. Acta 300, 253–262 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Jiangxi Scientific Fund (20142BBE50071) and Jiangxi Education Fund (KJLD13006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaogang Sun.

Ethics declarations

Conflict of interest

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, J., Sun, X., Li, R. et al. MP as a current collector to prepare high-performance SnO2–GO/MP electrode. J Mater Sci: Mater Electron 31, 9242–9249 (2020). https://doi.org/10.1007/s10854-020-03455-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03455-y

Navigation