Skip to main content
Log in

Effect of filler structure on the dielectric and thermal properties of SiO2/PTFE composites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The effects of fillers’ structure on microstructure, dielectric and thermal properties of the SiO2/PTFE composite were investigated. The composites were prepared by a calendering and hot-pressing process, and their dielectric, thermal properties of composites with various SiO2 fillers were studied. The morphologic analysis shows that open pores on the particles’ surface improve the interfacial adhesion between silica and PTFE without any chemical coupling agent. With the increase of the silica fillers content, the dielectric constants and dielectric losses of the composites increase gradually, while the thermal expansion coefficients decrease. The air phase in the porous fillers leads to low dielectric constants of the composites effectively. Bruggeman’s equation analysis indicates that solid-air interfaces influence the dielectric properties of the composites via the interfacial polarization. The difference between CTE testing results and theoretic prediction reveals that the microstructures, such as interfacial adhesion and particle size distribution, play the key roles in the thermal properties. It is suggested that the combination design of the microstructure and the component is a multi-scale strategy to tailor the properties of composites optionally for developing functional composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. Ree, J. Yoon, K. Heo, J. Mater. Chem. 16, 685–697 (2006)

    Article  CAS  Google Scholar 

  2. Y.-F. Duann, B.-L. Chen, T.-H. Tsai, J. Appl. Polym. Sci. 95, 1485–1492 (2005)

    Article  CAS  Google Scholar 

  3. N. Jayasundere, B.V. Smith, J. Appl. Phys. 73, 2462–2466 (1993)

    Article  Google Scholar 

  4. Y. Rao, J. Qu, T. Marinis, C.P. Wong, IEEE Trans. Compon. Packag. Technol. 23, 680–683 (2000)

    Article  CAS  Google Scholar 

  5. Y. Sun, Z. Zhang, C.P. Wong, Polymer 46, 2297–2305 (2005)

    Article  CAS  Google Scholar 

  6. J. Hernández-Torres, A. Mendoza-Galván, J. Non-Cryst. Solids 351, 2029–2035 (2005)

    Article  Google Scholar 

  7. Y.-H. Zhang, S.-G. Lu, Y.-Q. Li, Z.-M. Dang, J.H. Xin, S.-Y. Fu, G.-T. Li, R.-R. Guo, L.-F. Li, Adv. Mater. 17, 1056–1059 (2005)

    Article  CAS  Google Scholar 

  8. J. Lin, X. Wang, Polymer 48, 318–329 (2007)

    Article  CAS  Google Scholar 

  9. K.P. Murali, S. Rajesh, O. Prakash, A.R. Kulkarni, R. Ratheesh, Compos. Part Appl. Sci. Manuf. 40, 1179–1185 (2009)

    Article  Google Scholar 

  10. Y.-C. Chen, H.-C. Lin, Y.-D. Lee, J. Polym. Res. 10, 247–258 (2003)

    Article  CAS  Google Scholar 

  11. S. Thomas, V. Deepu, S. Uma, P. Mohanan, J. Philip, M.T. Sebastian, Mater. Sci. Eng. B 163, 67–75 (2009)

    Article  CAS  Google Scholar 

  12. S. Jin, L. Wang, Z. Wang, B. Huang, Q. Zhang, Z. Fu, J. Mater. Sci. Mater. Electron. 26, 7431–7437 (2015)

    Article  CAS  Google Scholar 

  13. P. Jiang, J. Bian, Int. J. Appl. Ceram. Technol. 16, 152–159 (2019)

    Article  CAS  Google Scholar 

  14. Y. Yuan, S.R. Zhang, X.H. Zhou, E.Z. Li, Mater. Chem. Phys. 141, 175–179 (2013)

    Article  CAS  Google Scholar 

  15. K.-T. Wu, Y. Yuan, S.-R. Zhang, X.-Y. Yan, Y.-R. Cui, J. Polym. Res. 20, 223 (2013)

    Article  Google Scholar 

  16. K.P. Murali, S. Rajesh, K.S. Jacob, O. Prakash, A.R. Kulkarni, R. Ratheesh, J. Mater. Sci. Mater. Electron. 21, 192–198 (2010)

    Article  CAS  Google Scholar 

  17. Y. Yuan, Y.R. Cui, K.T. Wu, Q.Q. Huang, S.R. Zhang, J. Polym. Res. 21, 366 (2014)

    Article  Google Scholar 

  18. M.T. Sebastian, H. Jantunen, Int. J. Appl. Ceram. Technol. 7, 415–434 (2010)

    CAS  Google Scholar 

  19. H. Luo, X. Zhou, C. Ellingford, Y. Zhang, S. Chen, K. Zhou, D. Zhang, C.R. Bowen, C. Wan, Chem. Soc. Rev. 48, 4424–4465 (2019)

    Article  CAS  Google Scholar 

  20. W. Schärtl, Nanoscale 2, 829–843 (2010)

    Article  Google Scholar 

  21. C. Pan, K. Kou, Y. Zhang, Z. Li, T. Ji, G. Wu, Mater. Sci. Eng. B 238–239, 61 (2018)

    Article  Google Scholar 

  22. P. Hu, Y. Shen, Y. Guan, X. Zhang, Y. Lin, Q. Zhang, C.-W. Nan, Adv. Funct. Mater. 24, 3172–3178 (2014)

    Article  CAS  Google Scholar 

  23. Y. Zhang, W. Li, S. Xu, Z. Wang, Y. Zhao, J. Li, W. Fei, J. Mater. Chem. A 6, 24550–24559 (2018)

    Article  CAS  Google Scholar 

  24. R. Guo, J.I. Roscow, C.R. Bowen, H. Luo, Y. Huang, Y. Ma, K. Zhou, D. Zhang, J. Mater. Chem. A 8, 3135–3144 (2020)

    Article  CAS  Google Scholar 

  25. S. Kang, S.I. Hong, C.R. Choe, M. Park, S. Rim, J. Kim, Polymer 42, 879–887 (2001)

    Article  CAS  Google Scholar 

  26. E. Allahyarov, H. Löwen, L. Zhu, Phys. Chem. Chem. Phys. 18, 19103–19117 (2016)

    Article  CAS  Google Scholar 

  27. E.S. Clark, Polymer 40, 4659–4665 (1999)

    Article  CAS  Google Scholar 

  28. W. Zhou, D. Yu, C. Wang, Q. An, S. Qi, Polym. Eng. Sci. 48, 1381–1388 (2008)

    Article  CAS  Google Scholar 

  29. L. Zheng, J. Zhou, J. Shen, Y.Y. Qi, S. Li, S. Shen, J. Mater. Sci. Mater. Electron. 29, 17195–17200 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51572205), the Foundation Strengthening Program Key Basic Research Project (No. 2019-JCJQ-ZD-291), the Equipment Pre-Research Joint Fund of EDD and MOE (No. 6141A02022262), the Fundamental Research Funds for the Central Universities (WUT: 2018III019) and Science and Technology Innovation Program of Hubei Province (No. 2018BKJ005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Shen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, K., Zhou, J., Li, Q. et al. Effect of filler structure on the dielectric and thermal properties of SiO2/PTFE composites. J Mater Sci: Mater Electron 31, 9196–9202 (2020). https://doi.org/10.1007/s10854-020-03449-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03449-w

Navigation