Skip to main content
Log in

Nanoclay-mediated photocatalytic activity enhancement of copper oxide nanoparticles for enhanced methyl orange photodegradation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Photodegradation of organic pollutants is considered to be the most suitable and cheaper techniques to counter the contamination issues. Metal nanoparticles are considered to be the most effective heterogenous photocatalysts for the photodegradation of organic pollutants. Besides, CuO oxide nanoparticles are well-known photocatalysts for photocatalytically degrading organic pollutants. Herein, we reported the synthesis of pure copper oxide nanoparticles (CuO NPs) and nanoclay-supported copper oxide nanoparticles (CuO/NC NPs) by facile chemical reduction technique for swift photodegradation of organic dye. The X-ray diffractogram (XRD) has demonstrated a typical monoclinic phase of CuO NPs. The morphological features via scanning electronic microscopy (FESEM) showed agglomerated morphology of CuO NPs with 372.57 ± 1.76 nm average particle size. The micrographs also revealed the homogenous dispersion of CuO NPs over NC surface in CuO/NC nanocomposite. A polydispersity index (PDI) of 0.39 presented slight variation in the particle size of CuO NPs, which is also supported by the results obtained from atomic force microscopy (AFM), FESEM and transmission electron microscopy (TEM). CuO/NC NPs demonstrated outstanding methyl orange degradation over a very short period of time under simulated light. Using CuO/NC NPs, about 97.18% and 95.96% dye degradations were achieved in merely 4 min, under UV and visible light, respectively. The excellent photodegradation efficacy of CuO/NC NPs can be attributed to the homogenous distribution of CuO NPs, which facilitates the generation of photoexcitons (electrons and holes), enhances charge transfer and minimizes the charge recombination. The NC induced the required photostability by providing sufficient space for NPs distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. R. Arunadevi, B. Kavitha, M. Rajarajan, A. Suganthi, A. Jeyamurugan, Surf. Interfaces 10, 32 (2018)

    CAS  Google Scholar 

  2. R.G. Saratale, G.D. Saratale, J.S. Chang, S.P. Govindwar, J. Taiwan Inst. Chem. Eng. 42, 138 (2011)

    CAS  Google Scholar 

  3. I. Kazeminezhad, A. Sadollahkhani, Mater. Lett. 120, 267 (2014)

    CAS  Google Scholar 

  4. H. Zhu, R. Jiang, L. Xiao, Y. Chang, Y. Guan, X. Li, G.Zeng, J. Hazard. Mater. 169, 933 (2009)

    CAS  Google Scholar 

  5. S. Shahabuddin, R. Khanam, M. Khalid, N.M. Sarih, J.J. Ching, S. Mohamad, R. Saidur, Arab. J. Chem. 11, 1000 (2018)

    CAS  Google Scholar 

  6. A. Kumar, G.Pandey, Mater. Sci. Eng. Int. J. 1, 106 (2017)

    Google Scholar 

  7. K. Saeed, I. Khan, S.Y. Park, Desalin. Water Treat. 54, 3146 (2015)

    CAS  Google Scholar 

  8. I. A.Elouinani, M. Boumanchar, Y. Zbair, A. Chhiti, F. Sahibed-dine, M. Bentiss, Bensitel, J. Mater. Environ. Sci. 8, 1301 (2017)

    Google Scholar 

  9. R. Tanwar, S. Kumar, U.K. Mandal, J. Photochem. Photobiol. A. Chem. 333, 105 (2017)

    CAS  Google Scholar 

  10. K. Saeed, I. Khan, Turk. J. Chem. 41, 391 (2017)

    CAS  Google Scholar 

  11. A.N. Ejhieh, M. Khorsandi, Desalination 262, 79 (2010)

    Google Scholar 

  12. S.K. Kansal, S. Sood, A. Umar, S.K. Mehta, J. Alloys Compd. 581, 392 (2013)

    CAS  Google Scholar 

  13. J. Marto, P.S. Marcos, T. Trindade, J.A. Labrincha, J. Hazard. Mater. 163, 36 (2009)

    CAS  Google Scholar 

  14. J. Aliaga, N. Cifuentes, G. Gonzalez, C.S. Torres, E. Benavente, Catalysts 8, 374 (2018)

    Google Scholar 

  15. K. Fischer, P. Schulz, I. Atanasov, A.A. Latif, I. Thomas, M. Kuhnert, A. Prager, J. Griebel, A. Schulze, Catalysts 8, 376 (2018)

    Google Scholar 

  16. Y. Li, Q. Gu, X. Liu, M. Zhang, Mater. Sci. Forum 917, 190 (2018)

    Google Scholar 

  17. V.K. Gupta, R. Jain, A. Mittal, M. Mathur, S. Sikarwar, J. Colloid Interface Sci. 309, 464 (2007)

    CAS  Google Scholar 

  18. D. Yu, R. Cai, Z.Liu, Spectrochim. Acta A Mol. Biomol. Spectrosc. 60, 1617 (2004)

    Google Scholar 

  19. W. Chomkitichai, J. Pama, P. Jaiyen, S. Pano, J. Ketwaraporn, P. Pookmanee, S. Phanichphant, P. Jansanthea, Appl. Mech. Mater. 886, 138 (2019)

    Google Scholar 

  20. X. Liu, H. Zhai, P. Wang, Q. Zhang, Z. Wang, Y. Liu, Y. Dai, B. Huang, X. Qin, X. Zhang, Catal. Sci. Technol. 9, 652 (2019)

    CAS  Google Scholar 

  21. M.R. Abhilash, G. Akshatha, S. Srikantaswamy, RSC Adv. 9, 8557 (2019)

    CAS  Google Scholar 

  22. H. Gu, X. Chen, F. Chen, X. Zhou, Z. Parsaee, Ultrason. Sonochem. 41, 109 (2018)

    CAS  Google Scholar 

  23. Z.A.M. Hir, P. Moradihamedani, A.H. Abdullah, M.A. Mohamed, Mater. Sci. Semicond. Process. 57, 157 (2017)

    CAS  Google Scholar 

  24. A. Bhattacharyya, S. Kawi, M.B. Ray, Catal. Today 98, 431 (2004)

    CAS  Google Scholar 

  25. M.P. Seabra, R.R. Pires, J.A. Labrincha, Chem. Eng. J. 171, 692 (2011)

    CAS  Google Scholar 

  26. N. Zada, I. Khan, T. Shah, T. Gul, N. Khan, K. Saeed, Inorg. Nano-Met. Chem. 50, 333 (2020)

    CAS  Google Scholar 

  27. S. Ali, Z. Li, S. Chen, A. Zada, I. Khan, I. Khan, W. Ali, S. Shaheen, Y. Qu, L. Jing, Catal. Today 335, 557 (2019)

    CAS  Google Scholar 

  28. K. Saeed, M. Sadiq, I. Khan, S. Ullah, N. Ali, A. Khan, Appl. Water Sci. 8, 60 (2018)

    Google Scholar 

  29. K. Mikami, Y. Kido, Y. Akaishi, A. Quitain, T. Kida, Sensors 19, 211 (2019)

    Google Scholar 

  30. L. Lin, Y. Ma, Q. Xie, L. Wang, Q. Zhang, D.L. Peng, ACS Nano 11, 6893 (2017)

    CAS  Google Scholar 

  31. J. Ha, Y.T. Kim, J. Choi, Chem. Sus. Chem. 13, 419 (2020)

    CAS  Google Scholar 

  32. E. Alzahrani, R.A. Ahmed, Int. J. Electrochem. Sci. 11, 47123 (2016)

    Google Scholar 

  33. A.P.A. Mary, A.T. Ansari, R. Subramanian, J. King Saud Univ. Sci. 31, 1103 (2019)

    Google Scholar 

  34. A.N. Bnaerjee, S.W. Joo, Nanotechnology 22, 365705 (2011)

    Google Scholar 

  35. Y. Cao, Y. Saygili, A. Ummadisingu, J. Teuscher, J. Luo, N. Pellet, F. Giordano, S.M. Zakeeruddin, J.E. Moser, M. Freitag, A. Hagfeldt, M. Gratzel, Nat. Commun. 8, 15390 (2017)

    Google Scholar 

  36. M.N. Asl, N.M. Mahmodi, P. Teymouri, B. Shahmoradi, R. Rezaee, A.Maleki, Desalin. Water Treat. 57, 1 (2016)

    Google Scholar 

  37. M. Batool, M.Z. Qureshi, F. Hashmi, N. Mehboob, W.M. Daoush, Asian J. Chem. 31, 707 (2019)

    CAS  Google Scholar 

  38. C.R. Marcelo, G.A. Puiatti, M.A. Nascimento, A.F. Oliveira, R.P. Lopes, J. Nanomater. (2018). https://doi.org/10.1155/2018/4642038

    Article  Google Scholar 

  39. T. Zhang, I.P.A.F. Souza, J. Xu, V.C. Almeida, T. Asefa, Nanomaterials 8, 636 (2018)

    Google Scholar 

  40. M.S. Niasari, F. Davar, Mater. Lett. 63, 441 (2009)

    Google Scholar 

  41. K. Saeed, I. Khan, T. Shah, S.Y. Park, Fiber Polym. 16, 1870 (2015)

    CAS  Google Scholar 

  42. R. Gong, J. Ye, W. Dai, X. Yan, J. Hu, X. Hu, S. Li, H. Huang, Ind. Eng. Chem. Res. 52, 14297 (2013)

    CAS  Google Scholar 

  43. Z. Hong, Y. Cao, J. Deng, Mater. Lett. 52, 34 (2002)

    CAS  Google Scholar 

  44. Z. Li, Y. Xin, Z. Zhang, H. Wu, P. Wang, Sci. Rep. 5, 10617 (2015)

    CAS  Google Scholar 

  45. Z. You, J.M. Beale, J.M. Foley, S. Roy, G.M. Odegard, Q. Dai, S.W. Goh, Constr. Build. Mater. 25, 1072 (2011)

    Google Scholar 

  46. M.W. Ho, C.K. Lam, K. Lau, D.H.L. Ng, D.Hui, Compos. Struct. 75, 415 (2006)

    Google Scholar 

  47. I. Khan, M. Sadiq, I. Khan, K. Saeed, Environ. Sci. Pollut. R. 26, 5140 (2019)

    CAS  Google Scholar 

  48. F. Gao, H. Pang, S. Xu, Q. Lu, Chem. Commun. 24, 3571 (2009)

    Google Scholar 

  49. L. Sun, X. Wu, M. Meng, X. Zhu, P.K. Chu, J. Phys. Chem. C 118, 28063 (2014)

    CAS  Google Scholar 

  50. C. Dong, M. Zhong, T. Huang, M. Ma, D. Wortmann, M. Brajdic, I. Kelbassa, ACS Appl. Mater. Interfaces 3, 4332 (2011)

    CAS  Google Scholar 

  51. T. Kim, V.G. Parale, H.N.R. Jung, Y. Kim, Z. Driss, D. Driss, A. Bouabidi, S. Euchy, H.H. Park, Nanomaterials 9, 358 (2019)

    CAS  Google Scholar 

  52. H. Park, S.A. Hira, N. Muthuchamy, S. Park, K.H. Park, Nanomater. Nanotechnol. 9, 1 (2019)

    Google Scholar 

  53. S.N.S. Jefri, A.H. Abdullah, E.N. Mohammad, Asian J. Green Chem. 3, 271 (2019)

    Google Scholar 

  54. M.R.G. Robles, J.J.P. Bueno, C.S.A. Syllas, M.L.M. Lopez, F.M. Guerrero, MRS Adv. 3, 3933 (2018)

    Google Scholar 

  55. Inamuddin, Int. J. Biol. Macromol. 121, 1046 (2019)

    CAS  Google Scholar 

  56. K. Saeed, I. Khan, T. Gul, M.Sadiq, Appl. Water Sci. 7, 3841 (2017)

    CAS  Google Scholar 

  57. N. Zada, K. Saeed, I. Khan, Appl. Water Sci. 10, 40 (2020)

    CAS  Google Scholar 

  58. K.M. Reza, A.S.W. Kurny, F. Gulshan, Appl. Water Sci. 7, 1569 (2017)

    CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by Bacha Khan University, Charsadda.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khalid Saeed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, I., Khan, I., Usman, M. et al. Nanoclay-mediated photocatalytic activity enhancement of copper oxide nanoparticles for enhanced methyl orange photodegradation. J Mater Sci: Mater Electron 31, 8971–8985 (2020). https://doi.org/10.1007/s10854-020-03431-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03431-6

Navigation