Skip to main content
Log in

Sm3+ induced-SrWO4 phosphor: analysis of photoluminescence and photocatalytic properties with electron density distribution studies

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present study, we designed a spherical shape like Sr1−xSmxWO4 (x = 0.0, 0.01, 0.02, 0.03, 0.04 and 0.05) materials by simple co-precipitation route and evaluated its photoluminescence and photocatalytic properties. The structural and morphological properties of as-prepared materials were studied by powder X-ray diffraction method, X-ray photoelectron spectroscopy, scanning electron micrographic images and transmission electron micrographic images. The photoluminescence behavior of Sm3+-doped SrWO4 for visible excitation (405 nm) was examined to analyze its use as white LED. The emission spectra consist of intra 4f transition of Sm3+ such as 4\({\text{G}}_{5/2}\to\)6\({\text{H}}_{5/2}\) (561 nm), 4\({\text{G}}_{5/2}\to\)6\({\text{H}}_{7/2}\) (601 nm), 4\({\text{G}}_{5/2}\to\)6\({\text{H}}_{9/2}\) (642 nm) and 4\({\text{G}}_{5/2}\to\)6\({\text{H}}_{11/2}\) (711 nm), respectively. Furthermore, the emission wavelength at 601 and 642 nm suggests a strong orange and red emission, which can be applied for the application for near-UV excitation. On the other hand, Sm3+-doped SrWO4 played excellent catalyst towards the photodegradation of Ibuprofen (IBF). The obtained results from the UV-Vis spectroscopy suggested that 3% of Sm3+-doped SrWO4 had high photocatalytic activity compared to other materials. The degradation efficiency of Sr0.97Sm0.03WO4 toward IBF was observed about 97% within 80 min under visible irradiation and it showed good stability by observing the reusability of catalyst. These results suggested that the Sm3+-doped SrWO4 material are suitable candidate for application in photoluminescence and photocatalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Scheme 2
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. L.Y. Wang, E.H. Song, T.T. Deng, Y.Y. Zhou, Z.F. Liao, W.R. Zhao, B. Zhou, Q.Y. Zhang, Luminescence properties and warm white LED application of a ternary-alkaline fluoride red phosphor K2NaAlF6:Mn4+. Dalton. Trans. 46, 9925–9933 (2017). https://doi.org/10.1039/c7dt02036h

    Article  CAS  Google Scholar 

  2. J. Zhong, D. Chen, W. Zhao, Y. Zhou, H. Yu, L. Chen, Z. Ji, Garnet-based Li6CaLa2Sb2O12:Eu3+ red phosphors: a potential color-converting material for warm white light-emitting diodes. J. Mater. Chem. C. 3, 4500–4510 (2015). https://doi.org/10.1039/c5tc00708a

    Article  CAS  Google Scholar 

  3. F. Wang, Y. Lin, H. Shi, W. Wang, Z. Deng, J. Chen, X. Yuan, Y. Cao, Introduction on the fabrication technique of phosphor in glass by tape-casting and investigation on the chromaticity property. Opt. Express 22, A1355 (2014). https://doi.org/10.1364/oe.22.0a1355

    Article  Google Scholar 

  4. H.D. Nguyen, C.C. Lin, M.H. Fang, R.S. Liu, Synthesis of Na2SiF6:Mn4+ red phosphors for white LED applications by co-precipitation. J. Mater. Chem. C. 2, 10268–10272 (2014). https://doi.org/10.1039/c4tc02062f

    Article  CAS  Google Scholar 

  5. M.M. Khin, A.S. Nair, V.J. Babu, R. Murugan, S. Ramakrishna, A review on nanomaterials for environmental remediation. Energy Environ. Sci. 5, 8075–8109 (2012). https://doi.org/10.1039/c2ee21818f

    Article  CAS  Google Scholar 

  6. S. Rahimnejad, J.H. He, W. Chen, K. Wu, G.Q. Xu, Tuning the electronic and structural properties of WO3 nanocrystals by varying transition metal tungstate precursors. RSC Adv. 4, 62423–62429 (2014). https://doi.org/10.1039/c4ra10650d

    Article  CAS  Google Scholar 

  7. N. Dirany, E. McRae, M. Arab, Morphological and structural investigation of SrWO4 microcrystals in relationship with the electrical impedance properties. CrystEngComm. 19, 5008–5021 (2017). https://doi.org/10.1039/c7ce00802c

    Article  CAS  Google Scholar 

  8. X.J. Dai, Y.S. Luo, W.D. Zhang, S.Y. Fu, Facile hydrothermal synthesis and photocatalytic activity of bismuth tungstate hierarchical hollow spheres with an ultrahigh surface area. Dalton Trans. 39, 3426–3432 (2010). https://doi.org/10.1039/b923443h

    Article  CAS  Google Scholar 

  9. D. Sivaganesh, S. Saravanakumar, V. Sivakumar, R. Rajajeyaganthan, M. Arunpandian, J. Nandha Gopal, T.K. Thirumalaisamy, Surfactants-assisted synthesis of ZnWO4 nanostructures: a view on photocatalysis, photoluminescence and electron density distribution analysis. Mater. Charact. 159, 110035 (2020). https://doi.org/10.1016/j.matchar.2019.110035

    Article  CAS  Google Scholar 

  10. D.M. Lugo, J. Oberdisse, A. Lapp, G.H. Findenegg, Effect of nanoparticle size on the morphology of adsorbed surfactant layers. J. Phys. Chem. 141, 4183–4191 (2010)

    Article  Google Scholar 

  11. B. Xu, X. Cao, G. Wang, Y. Li, Y. Wang, J. Su, Controlled synthesis and novel luminescence properties of string SrWO4:Eu3+ nanobeans. Dalton Trans. 43, 11493–11501 (2014). https://doi.org/10.1039/c4dt00489b

    Article  CAS  Google Scholar 

  12. R.S. Yadav, S.B. Rai, Effect of annealing and excitation wavelength on the downconversion photoluminescence of Sm3+ doped Y2O3 nano-crystalline phosphor. Opt. Laser Technol. 111, 169–175 (2019). https://doi.org/10.1016/j.optlastec.2018.09.049

    Article  CAS  Google Scholar 

  13. S.K. Thatikonda, W. Huang, X. Du, C. Yao, Y. Ke, J. Wu, N. Qin, D. Bao, Sm-doping induced large enhancement of antiferroelectric and energy storage performances of (111) oriented PbZrO3 thin films. Ceram. Int. 45, 23586–23591 (2019). https://doi.org/10.1016/j.ceramint.2019.08.069

    Article  CAS  Google Scholar 

  14. J. Liu, S. Liu, Y. Chen, Q. Zhao, Y. Zhao, W. Xiang, X. Liang, Ren, Sm3+-doped CsPbBr3 NCs glass: a luminescent material for potential use in lighting engineering. Ceram. Int. 45, 22688–22693 (2019). https://doi.org/10.1016/j.ceramint.2019.07.304

    Article  CAS  Google Scholar 

  15. M. Bally, N. Dendukuri, B. Rich, L. Nadeau, A. Helin-Salmivaara, E. Garbe, J.M. Brophy, Risk of acute myocardial infarction with NSAIDs in real world use: Bayesian meta-analysis of individual patient data. BMJ. (2017). https://doi.org/10.1136/bmj.j1909

    Article  Google Scholar 

  16. C. Yuan, C.H. Hung, H.W. Li, W.H. Chang, Photodegradation of ibuprofen by TiO2 co-doping with urea and functionalized CNT irradiated with visible light: effect of doping content and pH. Chemosphere. 155, 471–478 (2016). https://doi.org/10.1016/j.chemosphere.2016.04.055

    Article  CAS  Google Scholar 

  17. W. Cao, Y. Yuan, C. Yang, S. Wu, J. Cheng, In-situ fabrication of g-C3N4/MIL-68(In)-NH2 heterojunction composites with enhanced visible-light photocatalytic activity for degradation of ibuprofen. Chem. Eng. J. 68, 123608 (2019). https://doi.org/10.1016/j.cej.2019.123608

    Article  CAS  Google Scholar 

  18. E. Bilgin Simsek, B. Kilic, M. Asgin, A. Akan, Graphene oxide based heterojunction TiO2–ZnO catalysts with outstanding photocatalytic performance for bisphenol-A, ibuprofen and flurbiprofen. J. Ind. Eng. Chem. 59, 115–126 (2018). https://doi.org/10.1016/j.jiec.2017.10.014

    Article  CAS  Google Scholar 

  19. D. Sivaganesh, S. Saravanakumar, V. Sivakumar, K.S.S. Ali, E. Akapo, E. Alemayehu, R. Rajajeyaganthan, R. Saravanan, Structural, optical and charge density analysis of Al doped ZnO materials. J. Mater. Sci. Mater. Electron. 30, 2966–2974 (2019). https://doi.org/10.1007/s10854-018-00574-5

    Article  CAS  Google Scholar 

  20. F.T.L. Muniz, M.A.R. Miranda, C. Morilla Dos Santos, J.M. Sasaki, The Scherrer equation and the dynamical theory of X-ray diffraction. Acta Crystallogr. A  72, 385–390 (2016). https://doi.org/10.1107/S205327331600365X

    Article  CAS  Google Scholar 

  21. H.M. Rietveld, A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2, 65–71 (1969). https://doi.org/10.1107/s0021889869006558

    Article  CAS  Google Scholar 

  22. S. Saravanakumar, D. Sivaganesh, K.S.S. Ali, M.C. Robert, M.P. Rani, R. Chokkalingam, R. Saravanan, Analysis of structural, optical and charge density distribution studies on Zn1–xMnxS nanostructures. Physica B 545, 134–140 (2018). https://doi.org/10.1016/j.physb.2018.05.037

    Article  CAS  Google Scholar 

  23. D. Santamaria-Perez, D. Errandonea, P. Rodriguez-Hernandez, A. Muñoz, R. Lacomba-Perales, A. Polian, Y. Meng, Polymorphism in strontium tungstate SrWO4 under quasi-hydrostatic compression. Inorg. Chem. 55, 10406–10414 (2016). https://doi.org/10.1021/acs.inorgchem.6b01591

    Article  CAS  Google Scholar 

  24. V. Young, T. Otagawa, XPS studies on strontium compounds. Appl. Surf. Sci. 20, 228–248 (1985). https://doi.org/10.1016/0378-5963(85)90083-2

    Article  CAS  Google Scholar 

  25. L. Chen, Y. Gao, Fabrication of luminescent SrWO4 thin films by a novel electrochemical method. Mater. Res. Bull. 42, 1823–1830 (2007). https://doi.org/10.1016/j.materresbull.2006.12.002

    Article  CAS  Google Scholar 

  26. D. Ranjith Kumar, K.S. Ranjith, R.T. Rajendra Kumar, Structural, optical, photocurrent and solar driven photocatalytic properties of vertically aligned samarium doped ZnO nanorod arrays. Optik (Stuttg). 154, 115–125 (2018). https://doi.org/10.1016/j.ijleo.2017.10.004

    Article  CAS  Google Scholar 

  27. B.P. Maheshwary, R.A. Singh, Singh, Effect of annealing on the structural, optical and emissive properties of SrWO4:Ln3+ (Dy3+, Eu3+ and Sm3+) nanoparticles, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 152, 199–207 (2016). https://doi.org/10.1016/j.saa.2015.07.074

    Article  CAS  Google Scholar 

  28. J. Zhang, Y. Wang, Z. Zhai, G. Chen, Investigations on morphology, photoluminescence and cathodoluminescence of SrWO4 and SrWO4:Tb3+. Opt. Mater. (Amst). 38, 126–130 (2014). https://doi.org/10.1016/j.optmat.2014.10.013

    Article  CAS  Google Scholar 

  29. Y. Ren, Y. Liu, R. Yang, A series of color tunable yellow-orange-red-emitting SrWO4:RE (Sm3+, Eu3+-Sm3+) phosphor for near ultraviolet and blue light-based warm white light emitting diodes. Superlattices Microstruct. 91, 138–147 (2016). https://doi.org/10.1016/j.spmi.2015.12.026

    Article  CAS  Google Scholar 

  30. M. Shivaram, H. Nagabhushana, S.C. Sharma, S.C. Prashantha, B. Daruka Prasad, N. Dhananjaya, R. Hari Krishna, B.M. Nagabhushana, C. Shivakumara, R.P.S. Chakradhar, Synthesis and luminescence properties of Sm3+ doped CaTiO3 nanophosphor for application in white LED under NUV excitation. Spectrochim. Acta A  128, 891–901 (2014). https://doi.org/10.1016/j.saa.2014.02.117

    Article  CAS  Google Scholar 

  31. Z. Wang, P. Li, Z. Yang, Q. Guo, A novel red phosphor BaZn2(PO4)2:Sm3+, R+ (R = Li, Na, K). J. Lumin. 132, 1944–1948 (2012). https://doi.org/10.1016/j.jlumin.2012.03.022

    Article  CAS  Google Scholar 

  32. G. Blasse, B.C. Grabmaier, Luminescent materials telos (Springer, Berlin, 1994)

    Book  Google Scholar 

  33. Y.S. Tver, Concentration quenching of luminescence of rare-earth ions in chalcogenide. Glasses 29, 166–168 (2003)

    Google Scholar 

  34. Search H, Journals C, Contact A, Iopscience M (1931) I.P. Address, THE 73

  35. Z. Lou, J. Hao, M. Cocivera, Luminescence of ZnWO4 and CdWO4 thin films prepared by spray pyrolysis. J. Lumin. 99, 349–354 (2002). https://doi.org/10.1016/S0022-2313(02)00372-1

    Article  CAS  Google Scholar 

  36. P. Siriwong, T. Thongtem, S. Thongtem, Hydrothermal synthesis, characterization, and optical properties of wolframite ZnWO4 nanorods. CrystEngComm (2011). https://doi.org/10.1039/c0ce00402b

    Article  Google Scholar 

  37. N.A.K. Aznan, M.R. Johan, Quantum size effect in ZnO nanoparticles via mechanical milling. J. Nanomater. (2012). https://doi.org/10.1155/2012/439010

    Article  Google Scholar 

  38. H. Tian, Y. Fan, Y. Zhao, L. Liu, Elimination of ibuprofen and its relative photo-induced toxicity by mesoporous BiOBr under simulated solar light irradiation. RSC Adv. 4, 13061–13070 (2014). https://doi.org/10.1039/c3ra47304j

    Article  CAS  Google Scholar 

  39. F. Huang, A. Yan, H. Zhao, Influences of doping on photocatalytic properties of TiO2 photocatalyst. Semicond. Photocatal.  Mater. Mech. Appl. (2016). https://doi.org/10.5772/63234

    Article  Google Scholar 

  40. Y. Zheng, J. Lin, Q. Wang, Emissions and photocatalytic selectivity of SrWO4:Ln3+ (Eu3+, Tb3+, Sm3+ and Dy3+) prepared by a supersonic microwave co-assistance method. Photochem. Photobiol. Sci. 11, 1567–1574 (2012). https://doi.org/10.1039/c2pp25184a

    Article  CAS  Google Scholar 

  41. C. Hou, B. Hu, J. Zhu, Photocatalytic degradation of methylene blue over TiO2 pretreated with varying concentrations of NaOH. Catalysts. (2018). https://doi.org/10.3390/catal8120575

    Article  Google Scholar 

  42. M. Thiruppathi, P. Senthil Kumar, P. Devendran, C. Ramalingan, M. Swaminathan, E.R. Nagarajan, Ce@TiO2 nanocomposites: An efficient, stable and affordable photocatalyst for the photodegradation of diclofenac sodium. J. Alloys Compd. 735, 728–734 (2018). https://doi.org/10.1016/j.jallcom.2017.11.139

    Article  CAS  Google Scholar 

  43. J. Singh, A.K. Manna, R.K. Soni, Bifunctional Au–TiO2 thin films with enhanced photocatalytic activity and SERS based multiplexed detection of organic pollutant. J. Mater. Sci. Mater. Electron. 30, 16478–16493 (2019). https://doi.org/10.1007/s10854-019-02023-3

    Article  CAS  Google Scholar 

  44. J. Singh, S. Juneja, S. Palsaniya, A.K. Manna, R.K. Soni, J. Bhattacharya, Evidence of oxygen defects mediated enhanced photocatalytic and antibacterial performance of ZnO nanorods. Colloids Surf. B  184, 110541 (2019). https://doi.org/10.1016/j.colsurfb.2019.110541

    Article  CAS  Google Scholar 

  45. Gmbh SBH (2001) The maximum enthropy method. https://doi.org/10.1007/978-3-642-88163-3

    Book  Google Scholar 

  46. K. Momma, T. Ikeda, A.A. Belik, F. Izumi, Dysnomia, a computer program for maximum-entropy method (MEM) analysis and its performance in the MEM-based pattern fitting. Powder Diffr. 28, 184–193 (2013). https://doi.org/10.1017/S088571561300002X

    Article  CAS  Google Scholar 

  47. K. Momma, F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. (2011). https://doi.org/10.1107/S0021889811038970

    Article  Google Scholar 

Download references

Acknowledgements

The author D.S would wish to thank the Kalasalingam Academy of Research and Education (KARE), International Research Centre (IRC) for providing the University Research Fellowship (URF) and instrumentation facilities. The authors are pleased to Dr. Arunachalam Lakshmanan, Dean (R&D), Saveetha Engineering College, Chennai for PL measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Saravanakumar.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sivaganesh, D., Saravanakumar, S., Sivakumar, V. et al. Sm3+ induced-SrWO4 phosphor: analysis of photoluminescence and photocatalytic properties with electron density distribution studies. J Mater Sci: Mater Electron 31, 8865–8883 (2020). https://doi.org/10.1007/s10854-020-03421-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03421-8

Navigation