Skip to main content
Log in

Dielectric relaxation and charge conduction mechanism in mechanochemically synthesized methylammonium bismuth iodide

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, methylammonium bismuth iodide [(CH3NH3)3Bi2I9] has been synthesized through the mechanochemical process. Indeed, (CH3NH3)3Bi2I9 emerges as promising alternative to lead-based inorganic–organic perovskite due to low toxicity and better stability. X-ray diffraction spectra reveal monoclinic structure of (CH3NH3)Bi2I9 with space group C2/c. Kubelka–Munk method is conducted to compute the bandgap (2.16 eV). The impedance and dielectric properties of (CH3NH3)3Bi2I9 have been investigated within frequency range of 4 Hz to 1 MHz for several temperatures in between 333 to 453 K. The complex impedance spectroscopy has analyzed by fitting the Cole–Cole plot with suitable grain and grain boundary contributions (rg, rgb). Conductivity and electric modulus spectra have been analyzed to enlight the shaded portion of transportation properties. The scaled coordination of modulus spectrum merges in a single master curve which signifies that the distribution of relaxation time is temperature independent. To compute the DC conductivity, AC conductivity data have fitted using Jonscher’s power law. The activation energy calculated from Arrhenius plot is 0.477 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. Liu, M. Yao, L. Shen, Third generation photovoltaic cells based on photonic crystals. J. Mater. Chem. C 7, 3121–3145 (2019). https://doi.org/10.1039/c8tc05461d

    Article  CAS  Google Scholar 

  2. M. Neukom, S. Züfle, S. Jenatsch, B. Ruhstaller, Opto-electronic characterization of third-generation solar cells. Sci. Technol. Adv. Mater. 19, 291–316 (2018). https://doi.org/10.1080/14686996.2018.1442091

    Article  CAS  Google Scholar 

  3. A. Sharma, N.B. Chaure, Studies on CH3NH3PbI3 prepared by low-cost wet chemical technique. Appl. Phys. A Mater. Sci. Process. 125, 1–7 (2019). https://doi.org/10.1007/s00339-019-3047-1

    Article  CAS  Google Scholar 

  4. P. Sadhukhan, S. Kundu, A. Roy, A. Ray, P. Maji, H. Dutta, S.K. Pradhan, S. Das, Solvent-free solid-state synthesis of high yield mixed halide perovskites for easily tunable composition and band gap. Cryst. Growth Des. 18, 3428–3432 (2018). https://doi.org/10.1021/acs.cgd.8b00137

    Article  CAS  Google Scholar 

  5. S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J.P. Alcocer, T. Leijtens, L.M. Herz, A. Petrozza, H.J. Snaith, Electron-hole diffusion lengths exceeding. Science 342, 341–345 (2013)

    Article  CAS  Google Scholar 

  6. L. Liang, P. Gao, Lead-free hybrid perovskite absorbers for viable application: can we eat the cake and have it too? Adv. Sci. (2018). https://doi.org/10.1002/advs.201700331

    Article  Google Scholar 

  7. S.-W. Lee, S. Kim, S. Bae, K. Cho, T. Chung, L.E. Mundt, S. Lee, S. Park, H. Park, M.C. Schubert, S.W. Glunz, Y. Ko, Y. Jun, Y. Kang, H.-S. Lee, D. Kim, UV degradation and recovery of perovskite solar cells—supplementary information. Sci. Rep. 6, 38150 (2016). https://doi.org/10.1038/srep38150

    Article  CAS  Google Scholar 

  8. H.S. Kim, J.Y. Seo, N.G. Park, Material and device stability in perovskite solar cells. Chemsuschem 9, 2528–2540 (2016). https://doi.org/10.1002/cssc.201600915

    Article  CAS  Google Scholar 

  9. M. Lyu, J.H. Yun, M. Cai, Y. Jiao, P.V. Bernhardt, M. Zhang, Q. Wang, A. Du, H. Wang, G. Liu, L. Wang, Organic–inorganic bismuth (III)-based material: a lead-free, air-stable and solution-processable light-absorber beyond organolead perovskites. Nano Res. 9, 692–702 (2016). https://doi.org/10.1007/s12274-015-0948-y

    Article  CAS  Google Scholar 

  10. M. Lyu, J.H. Yun, P. Chen, M. Hao, L. Wang, Addressing toxicity of lead: progress and applications of low-toxic metal halide perovskites and their derivatives. Adv. Energy Mater. (2017). https://doi.org/10.1002/aenm.201602512

    Article  Google Scholar 

  11. V. Sarritzu, N. Sestu, D. Marongiu, X. Chang, S. Masi, A. Rizzo, S. Colella, F. Quochi, M. Saba, A. Mura, G. Bongiovanni, Optical determination of Shockley–Read–Hall and interface recombination currents in hybrid perovskites. Sci. Rep. 7, 1–10 (2017). https://doi.org/10.1038/srep44629

    Article  CAS  Google Scholar 

  12. R.L.Z. Hoye, P. Schulz, L.T. Schelhas, A.M. Holder, K.H. Stone, J.D. Perkins, D. Vigil-Fowler, S. Siol, D.O. Scanlon, A. Zakutayev, A. Walsh, I.C. Smith, B.C. Melot, R.C. Kurchin, Y. Wang, J. Shi, F.C. Marques, J.J. Berry, W. Tumas, S. Lany, V. Stevanović, M.F. Toney, T. Buonassisi, Perovskite-inspired photovoltaic materials: toward best practices in materials characterization and calculations. Chem. Mater. 29, 1964–1988 (2017). https://doi.org/10.1021/acs.chemmater.6b03852

    Article  CAS  Google Scholar 

  13. A. Jain, K.A. Persson, G. Ceder, Research update: the materials genome initiative: data sharing and the impact of collaborative ab initio databases. APL Mater. (2016). https://doi.org/10.1063/1.4944683

    Article  Google Scholar 

  14. R.E. Brandt, V. Stevanović, D.S. Ginley, T. Buonassisi, Identifying defect-tolerant semiconductors with high minority-carrier lifetimes: beyond hybrid lead halide perovskites. MRS Commun. 5, 265–275 (2015). https://doi.org/10.1557/mrc.2015.26

    Article  CAS  Google Scholar 

  15. L.C. Lee, T.N. Huq, J.L. Macmanus-Driscoll, R.L.Z. Hoye, Research update: bismuth-based perovskite-inspired photovoltaic materials. APL Mater. 6, 12–14 (2018). https://doi.org/10.1063/1.5029484

    Article  CAS  Google Scholar 

  16. R. Pamphlett, G. Danscher, J. Rungby, M. Stoltenberg, Tissue uptake of bismuth from shotgun pellets. Environ. Res. 82, 258–262 (2000)

    Article  CAS  Google Scholar 

  17. M. Abulikemu, S. Ould-Chikh, X. Miao, E. Alarousu, B. Murali, G.O. Ngongang Ndjawa, J. Barbé, A. El Labban, A. Amassian, S. Del Gobbo, Optoelectronic and photovoltaic properties of the air-stable organohalide semiconductor (CH3NH3)3Bi2I9. J. Mater. Chem. A. 4, 12504–12515 (2016). https://doi.org/10.1039/c6ta04657f

    Article  CAS  Google Scholar 

  18. D. Priante, I. Dursun, M.S. Alias, D. Shi, V.A. Melnikov, T.K. Ng, O.F. Mohammed, O.M. Bakr, B.S. Ooi, The recombination mechanisms leading to amplified spontaneous emission at the true-green wavelength in CH3NH3PbBr3 perovskites. Appl. Phys. Lett. 106, 1–5 (2015). https://doi.org/10.1063/1.4913463

    Article  CAS  Google Scholar 

  19. R.L.Z. Hoye, R.E. Brandt, A. Osherov, V. Stevanovic, S.D. Stranks, M.W.B. Wilson, H. Kim, A.J. Akey, J.D. Perkins, R.C. Kurchin, J.R. Poindexter, E.N. Wang, M.G. Bawendi, V. Bulovic, T. Buonassisi, Methylammonium bismuth iodide as a lead-free, stable hybrid organic-inorganic solar absorber. Chem. A Eur. J. 22, 2605–2610 (2016). https://doi.org/10.1002/chem.201505055

    Article  CAS  Google Scholar 

  20. R. López, R. Gómez, Band-gap energy estimation from diffuse reflectance measurements on sol-gel and commercial TiO2: a comparative study. J. Sol-Gel Sci. Technol. 61, 1–7 (2012). https://doi.org/10.1007/s10971-011-2582-9

    Article  CAS  Google Scholar 

  21. B.W. Park, B. Philippe, X. Zhang, H. Rensmo, G. Boschloo, E.M.J. Johansson, Bismuth based hybrid perovskites A3Bi2I9 (A: methylammonium or cesium) for solar cell application. Adv. Mater. 27, 6806–6813 (2015). https://doi.org/10.1002/adma.201501978

    Article  CAS  Google Scholar 

  22. H. Rahmouni, M. Smari, B. Cherif, E. Dhahri, K. Khirouni, Conduction mechanism, impedance spectroscopic investigation and dielectric behavior of La0.5Ca0.5-xAgxMnO3 manganites with compositions below the concentration limit of silver solubility in perovskites (0 ≤ x ≤ 0.2). Dalton Trans. 44, 10457–10466 (2015). https://doi.org/10.1039/c5dt00444f

    Article  CAS  Google Scholar 

  23. P. Maji, S. Chatterjee, S. Das, Study on charge transportation and scaling behavior of CsPbI3 microwires. Ceram. Int. 45, 6012–6020 (2019). https://doi.org/10.1016/j.ceramint.2018.12.071

    Article  CAS  Google Scholar 

  24. D.K. Pattanayak, R.K. Parida, N.C. Nayak, A.B. Panda, B.N. Parida, Optical and transport properties of new double perovskite oxide. J. Mater. Sci. Mater. Electron. 29, 6215–6224 (2018). https://doi.org/10.1007/s10854-018-8597-z

    Article  CAS  Google Scholar 

  25. D.K. Pradhan, P. Misra, V.S. Puli, S. Sahoo, D.K. Pradhan, R.S. Katiyar, Studies on structural, dielectric, and transport properties of Ni0.65Zn0.35Fe2O4. J. Appl. Phys. 115, 243904 (2014). https://doi.org/10.1063/1.4885420

    Article  CAS  Google Scholar 

  26. M.S. Sheikh, A.P. Sakhya, A. Dutta, T.P. Sinha, Dielectric relaxation of CH3NH3PbI3 thin film. Thin Solid Films 638, 277–281 (2017). https://doi.org/10.1016/j.tsf.2017.07.070

    Article  CAS  Google Scholar 

  27. Y. Mateyshina, A. Slobodyuk, V. Kavun, N. Uvarov, Conductivity and NMR study of composite solid electrolytes CsNO2-A (A = SiO2, Al2O3, MgO). Solid State Ionics 324, 196–201 (2018). https://doi.org/10.1016/j.ssi.2018.04.026

    Article  CAS  Google Scholar 

  28. T. Wang, J. Hu, H. Yang, L. Jin, X. Wei, C. Li, F. Yan, Y. Lin, Dielectric relaxation and Maxwell–Wagner interface polarization in Nb2O5 doped 0.65BiFeO3-0.35BaTiO3 ceramics. J. Appl. Phys. 121, 084103 (2017). https://doi.org/10.1063/1.4977107

    Article  CAS  Google Scholar 

  29. M.R. Das, A. Mukherjee, P. Mitra, Structural, optical and electrical characterization of CBD synthesized CdO thin films: influence of deposition time. Mater. Sci. Pol. 35, 470–478 (2017). https://doi.org/10.1515/msp-2017-0063

    Article  CAS  Google Scholar 

  30. L. Zhang, Z.J. Tang, Polaron relaxation and variable-range-hopping conductivity in the giant-dielectric-constant material CaCu3Ti4O12. Phys. Rev. B Condens. Matter Mater. Phys. 70, 1–6 (2004). https://doi.org/10.1103/PhysRevB.70.174306

    Article  CAS  Google Scholar 

  31. M. Venkateswarlu, K. Narasimha Reddy, B. Rambabu, N. Satyanarayana, A.C. conductivity and dielectric studies of silver-based fast ion conducting glass system. Solid State Ionics 127, 177–184 (2000). https://doi.org/10.1016/S0167-2738(99)00257-X

    Article  CAS  Google Scholar 

  32. R.J. Sengwa, P. Dhatarwal, S. Choudhary, Study of time-ageing effect on the ionic conduction and structural dynamics in solid polymer electrolytes by dielectric relaxation spectroscopy. Solid State Ionics 324, 247–259 (2018). https://doi.org/10.1016/j.ssi.2018.07.015

    Article  CAS  Google Scholar 

  33. A. Molak, M. Paluch, S. Pawlus, J. Klimontko, Z. Ujma, I. Gruszka, Electric modulus approach to the analysis of electric relaxation in highly conducting (Na0.75Bi0.25)(Mn0.25Nb0.75)O3 ceramics. J. Phys. D. Appl. Phys. 38, 1450–1460 (2005). https://doi.org/10.1088/0022-3727/38/9/019

    Article  CAS  Google Scholar 

  34. B. Harihara Venkataraman, K.B.R. Varma, Frequency-dependent dielectric characteristics of ferroelectric SrBi2Nb2O9 ceramics. Solid State Ionics 167, 197–202 (2004). https://doi.org/10.1016/j.ssi.2003.12.020

    Article  CAS  Google Scholar 

  35. H. Yamamura, S. Takeda, K. Kakinuma, Dielectric relaxations in the Ce1-xNdxO2-δ system. Solid State Ionics 178, 1059–1064 (2007). https://doi.org/10.1016/j.ssi.2007.05.010

    Article  CAS  Google Scholar 

  36. P. Maji, A. Ray, P. Sadhukhan, A. Roy, S. Das, Fabrication of symmetric supercapacitor using cesium lead iodide (CsPbI3) microwire. Mater. Lett. 227, 268–271 (2018). https://doi.org/10.1016/j.matlet.2018.05.101

    Article  CAS  Google Scholar 

  37. R. Kaur, V. Sharma, M. Kumar, M. Singh, A. Singh, Conductivity relaxation in solid solution in Pb0.9Sm0.10Zr0.405Ti0.495Fe0.10O3 solid solution. J. Alloys Compd. 735, 1472–1479 (2018). https://doi.org/10.1016/j.jallcom.2017.11.254

    Article  CAS  Google Scholar 

  38. A. Kaur, L. Singh, K. Asokan, Electrical relaxation and conduction mechanisms in iron doped barium strontium titanate. Ceram. Int. 44, 3751–3759 (2018). https://doi.org/10.1016/j.ceramint.2017.11.158

    Article  CAS  Google Scholar 

  39. R. Tang, C. Jiang, W. Qian, J. Jian, X. Zhang, H. Wang, H. Yang, Dielectric relaxation, resonance and scaling behaviors in Sr3Co2Fe24O41 hexaferrite. Sci. Rep. 5, 1–11 (2015). https://doi.org/10.1038/srep13645

    Article  CAS  Google Scholar 

  40. M.R. Anantharaman, K.A. Malini, S. Sindhu, E.M. Mohammed, S.K. Date, S.D. Kulkarni, P.A. Joy, P. Kurian, Tailoring magnetic and dielectric properties of rubber ferrite composites containing mixed ferrites. Bull. Mater. Sci. 24, 623–631 (2001). https://doi.org/10.1007/BF02704011

    Article  CAS  Google Scholar 

  41. S.K. Badge, A.V. Deshpande, Study of dielectric and ferroelectric properties of bismuth titanate (Bi4Ti3O12) ceramic prepared by sol-gel synthesis and solid state reaction method with varying sintering temperature. Solid State Ionics 334, 21–28 (2019). https://doi.org/10.1016/j.ssi.2019.01.028

    Article  CAS  Google Scholar 

  42. M.S. Sheikh, A.P. Sakhya, P. Sadhukhan, A. Dutta, S. Das, T.P. Sinha, Dielectric relaxation and Ac conductivity of perovskites CH3NH3PbX3 (X = Br, I). Ferroelectrics 514, 146–157 (2017). https://doi.org/10.1080/00150193.2017.1359023

    Article  CAS  Google Scholar 

  43. S. Selvasekarapandian, M. Vijayakumar, Frequency-dependent conductivity and dielectric studies on LixV2O5 (x=0.6–1.6). Solid State Ionics 148, 329–334 (2002). https://doi.org/10.1016/S0167-2738(02)00070-X

    Article  CAS  Google Scholar 

  44. S. Sarangi, T. Badapanda, B. Behera, S. Anwar, Frequency and temperature dependence dielectric behavior of barium zirconate titanate nanocrystalline powder obtained by mechanochemical synthesis. J. Mater. Sci. Mater. Electron. 24, 4033–4042 (2013). https://doi.org/10.1007/s10854-013-1358-0

    Article  CAS  Google Scholar 

  45. A. Ray, A. Roy, S. De, S. Chatterjee, S. Das, Frequency and temperature dependent dielectric properties of TiO2-V2O5 nanocomposites. J. Appl. Phys. (2018). https://doi.org/10.1063/1.5012586

    Article  Google Scholar 

  46. A. Ray, A. Roy, S. Bhattacharjee, S. Jana, C.K. Ghosh, C. Sinha, S. Das, Correlation between the dielectric and electrochemical properties of TiO2-V2O5 nanocomposite for energy storage application. Electrochim. Acta. 266, 404–413 (2018). https://doi.org/10.1016/j.electacta.2018.02.033

    Article  CAS  Google Scholar 

  47. A.K. Roy, A. Singh, K. Kumari, K. Amar Nath, A. Prasad, K. Prasad, Electrical properties and AC conductivity of (Bi0.5Na0.5)0.94Ba0.06TiO3 ceramic. ISRN Ceram. 2012, 1–10 (2012). https://doi.org/10.5402/2012/854831

    Article  CAS  Google Scholar 

  48. D.K. Pradhan, R.N.P. Choudhary, C. Rinaldi, R.S. Katiyar, Effect of Mn substitution on electrical and magnetic properties of Bi0.9La0.1FeO3. J. Appl. Phys. (2009). https://doi.org/10.1063/1.3158121

    Article  Google Scholar 

  49. S. Mukherjee, S. Chatterjee, S. Rayaprol, S.D. Kaushik, S. Bhattacharya, P.K. Jana, Near room temperature magnetodielectric consequence in (Li, Ti) doped NiO ceramic. J. Appl. Phys. (2016). https://doi.org/10.1063/1.4945318

    Article  Google Scholar 

  50. A.K. Jonscher, The ‘Universal’ dielectric response. Nature 267(5613), 673–679 (1977)

    Article  CAS  Google Scholar 

  51. T. Paul, A. Ghosh, Structural and electrical transport properties of La2Mo2O9 thin films prepared by pulsed laser deposition. J. Appl. Phys. (2017). https://doi.org/10.1063/1.4979881

    Article  Google Scholar 

  52. T. Okiba, K. Shozugawa, M. Matsuo, T. Hashimoto, On crystal structure and electrical conduction properties. Solid State Ionics 346, 115191 (2020). https://doi.org/10.1016/j.ssi.2019.115191

    Article  CAS  Google Scholar 

  53. F.B. Abdallah, A. Benali, S. Azizi, M. Triki, E. Dhahri, M.P.F. Graça, M.A. Valente, Strontium-substituted La0.75Ba0.25–xSrxFeO3 (x = 0.05, 0.10 and 0.15) perovskite: dielectric and electrical studies. J. Mater. Sci. Mater. Electron. 30, 8457–8470 (2019). https://doi.org/10.1007/s10854-019-01166-7

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the Department of Science and Technology and Bio-Technology, Government of West Bengal [247(Sanc.)/ST/P/S&T/16G-36/2017 dated 25/03/2018; PI- S Das]. P. Sadhukhan acknowledges DST, Gov. of India for the INSPIRE fellowship (IF160132).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachindranath Das.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pujaru, S., Maji, P., Sadhukhan, P. et al. Dielectric relaxation and charge conduction mechanism in mechanochemically synthesized methylammonium bismuth iodide. J Mater Sci: Mater Electron 31, 8670–8679 (2020). https://doi.org/10.1007/s10854-020-03402-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03402-x

Navigation